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Abstract

A Network IDS (NIDS) is devised to examine network traffic to detect signs of malicious behaviour or violations of protection
policies. It is an essential piece of equipment in the fight to improve cybersecurity via early threat detection and response. Exist-
ing machine learning approaches, though efficient, are generally bogged down by significant manual feature engineering, which
restricts their flexibility to adapt to dynamic attack scenarios. Deep learning approaches, with the ability to automatically learn
high-level features, provide a robust alternative to designing effective IDS. This work proposes a novel hybrid deep learning ar-
chitecture to synergistically integrate CNN and LSTM networks for tackling the complexity of network intrusion detection. The
CNN module performs well in detecting spatial patterns of network traffic data, and the LSTM module incorporates temporal
dependencies to facilitate exhaustive analysis of sequential attack patterns. To improve model efficiency and avoid overfitting,
batch normalization and dropout layers are strategically integrated in the architecture. The model is extensively tested on three
diverse datasets, CIC-IDS2017, UNSW-NB15, and NSL-KDD, covering a broad range of contemporary attack types. Experi-
ments are performed for binary and multiclass classification tasks, and performance metrics are evaluated based on a confusion
matrix. Key performance metrics, like false alarm rate, accuracy, F1 score and detection rate, define the model’s performance in
intrusion detection with high accuracy while avoiding a high false positive rate. The outcome proves the model’s robust perfor-
mance across diverse network environments, varying from wired to wireless networks, and its applicability in detecting known
and novel threats. By tapping the power of automated feature extraction and sophisticated neural network design, the work
critically contributes to a scalable and efficient solution to existing network security, opening the door to real-time, adaptive
intrusion detection across complex digital terrain.
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1 Introduction

In today’s world, Network Intrusion Detection Systems (NIDS) are super important. Think of them as the watch-
dogs of your network, constantly monitoring traffic to sniff out any unauthorized access, cyber-attacks, or policy
slip ups. They’re basically what keeps your digital stuff safe from real-world threats. And with all the new tech
like IoT devices, big data, and cloud computing and how much it depends on everything being connected, network
security has become a bigger deal than ever. Even a tiny weak spot in your network can let someone compromise the
whole thing [1]. The old ways of protecting ourselves, like encryption and firewalls, aren’t enough anymore to stop
today’s clever cybercriminals [2]. That’s why cybersecurity folks focus on making smarter, more adaptable Intrusion
Detection Systems (IDS). The goal To keep the data private, make sure it’s not messed with, and ensure it’s always
available. A good IDS needs to spot known and brand-new threats and do it accurately without false alarms [3] [4].
Figure 1 represents the Global usage of NIDS in 2025, demonstrating rising deployment levels as a strategic defence
against evolving cyber threats. The data emphasizes how organizations prioritise NIDS for enhanced real-time net-
work protection.

*Corresponding author: Md Aadil Hasan, SCSET, Bennett University (aadilhasan1185@ gmail.com)
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Now, there are generally two main ways these IDS systems work: signature-based detection and anomaly detec-
tion, also known as misuse detection, which is all about looking for patterns of known threats.It’s usually accurate
and doesn’t give you a lot of false alerts. However, it’s not excellent at spotting new attacks it hasn’t seen before [5].
Anomaly detection is good at finding unknown threats by noticing when things aren’t behaving normally. The catch
is that it can sometimes give you more false positives. Attacks are getting more varied and unpredictable; detecting
anomalies is crucial for keeping networks secure.

This is where Intelligence algorithms come into play, where these systems can learn from data without needing
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Figure 1: Global Adoption Rate of NIDS — 2025

someone to constantly watch them, which means intrusion detection becomes more automated and adaptable. ML
and Deep learning are two key players here. ML models rely on manually created features to classify and detect
network traffic. In contrast, DL models, powered by neural networks, can automatically learn these features, often
leading to better results [6].

Over the past years, many different intrusion detection models have used Al techniques. However, many still struggle
with accuracy, have trouble detecting threats, and give too many false alarms when put to work in complex, real-
world situations. The fact that networks are so diverse and constantly changing makes it even harder for traditional
IDS solutions to be effective. To tackle these problems, this paper introduces a hybrid model of deep learning that
combines CNN & LSTM networks in which the CNN layer is designed to pull out spatial features from network
traffic. In contrast, the LSTM layer detects temporal dependencies, allowing the model to analyse the data’s static
and dynamic aspects. The hope is that this combination will improve accuracy and reduce false positives using the
best of both architectures.

The hybrid CNN+LSTM model is trained using three well-known datasets: WSN-DS, CIC-IDS, and UNSW-NB15.
The evaluation shows that the standalone CNN, LSTM, traditional machine learning models, and the hybrid model
came out on top, with higher accuracy and better threat detection rates. This makes it a promising option for defend-
ing against today’s advanced network attacks.

The paper is outlined as follows: Section II summarises machine learning algorithms for detecting network in-
trusions. Meanwhile, the increasing usage of deep learning strategies is discussed herein, and this hybrid model
indicates that it can solve the problem at hand. Section III describes the architecture of the CNN & LSTM hybrid
model using data from supervised machine learning experiments. Each parameter in the model was fully expressed,
and the preprocessing techniques were introduced. Data used for training and evaluating the model are presented in
Section IV. The datasets were carefully chosen to represent various characteristics of network attributes. Section V
describes the experimental setup of the proposed hybrid model and defines performance metrics used to assess the
model. The model’s effectiveness is assessed using various performance metrics, and the outcomes are concisely
summarized. The results and suggestions for further research are also included at the end of the paper.

2 Revolutionary Advances in Computing and Electronics: An International Journal



Hasan et al.

2 Types of IDS

Security professionals are looking to develop models capable of identifying known and unknown attacks in the
network, aiming to prevent any potential harm to network systems. As will be discussed next, the techniques used to
build IDS (Intrusion Detection Systems) are categorized into machine and deep learning frameworks.

2.1 IDS using ML

Machine Learning (ML) has always been a key component of intrusion detection systems. ML techniques apply
supervised learning algorithms such as SVM, Decision tree and Naive Bayes, and unsupervised techniques like Self-
Organizing Maps and k-means clustering [7]. The primary purpose of these algorithms is to boost the system’s
ability to detect threats. Using trained datasets, ML algorithms are employed to identify attacks and anomalies.
These algorithms typically address problems related to regression, classification, and clustering. Earlier research
mainly relied on datasets like NSL-KDD, KDD-CUP99 and DARPA. Although some models achieved reasonable
outcomes, these datasets are outdated and only cover basic types of attacks [8]. In today’s rapidly evolving network
environment, creating an efficient IDS requires extensive and updated datasets; thus, relying solely on traditional ML
models that work well with smaller datasets will not be sufficient.

2.2 IDS uwsing DL

Deep learning algorithms are a segment of machine learning techniques that use neural networks with several hidden
layers. It can also process unstructured and unlabelled data, not just structured inputs [9]. Deep learning offers
various performance advantages that make it well-suited for IDS development, including the robustness and scala-
bility of its algorithms and the ability to manage distinct forms of data [10]. These algorithms are designed to solve
sophisticated problems like machine translation, pattern identification and search engine optimization [11]. Unsu-
pervised neural models, including Autoencoders, RBMs, and Deep Belief Networks, are usually applied for feature
extraction [12]. Multi-layer perceptrons are also used in various fields to reduce error rates while training [13]. Some
of the most popular algorithms of deep learning are CNN and RNN. CNN is especially effective at auto discovering
spatial features without requiring hand engineered feature design, to curb overfitting by minimising the no. of train-
able parameters and promoting better generalization [4]& at the same time, RNNs are most used in the fields of NLP,
speech recognition, and video processing due to their ability to recognize sequential data patterns. In addition, LSTM
networks were re-discovered to overcome the vanishing gradient problem experienced by RNNs during training.

3 Proposed Methodology

This study has an intrusion detection system with CNN & LSTM layers. The proposed methodology is shown in
Fig. 2, which explains the whole experiment implementation from data collection to outcome evaluation.

Table 1: Test cases

Dataset Binary Classes Binary| Multiclass Types Multiclass
Count Count

CIC-IDS 2017 | Malicious, Normal | 2 Web Attack, FTTP, Patator, SSH-Patator, | 6
PortScan, Normal

UNSW-NB15 | Malicious, Normal | 2 Fuzzers, Worms, Generic, Exploits, Nor- | 10
mal, Analysis, Backdoor, Shellcode

WSN-DS Malicious, Normal | 2 Regular, Flooding, TDMA, Grayhole, | 5
Blackhole
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Figure 2: Proposed Methodology

Data Collection and Structuring

The 1st vital step in designing a good IDS is the selection of a proper dataset. The dataset must include normal and
malicious traffic to simulate the real scenarios the model will encounter. This research employs WSN-DS, CIC-IDS,
& UNSW-NBI15 datasets, which are publicly available and relatively newer. All three datasets include normal and
malicious traffic data that have been recently updated and consist of less redundant data. These datasets provide
realistic, recent, and diverse network traffic for practical IDS training.

3.2

e CIC-IDS2017: In 2017, the Canadian Institute for Cybersecurity 2017 released the CIC-IDS2017 dataset,

which records eleven attack categories—Brute Force, Port Scanning, DoS, XSS, SSH-Patator, FTP-Patator,
and SQL injection. It uses 80 flow attributes to characterize each instance and is widely adopted for modern
cyber threat analysis

UNSW-NBI1S5: It was developed by the Australian Centre for Cyber Security in 2015. UNSW-NB15 combines
benign traffic with nine malicious classes, such as Backdoor, DoS, Fuzzers, Analysis and Exploits. The traffic
was obtained from real-world sources like Symantec’s BID, Microsoft’s MSD, and CVE databases, which
provide complete coverage of vulnerabilities and attack types.

WSN-DS: Proposed in 2016, WSN-DS targets wireless sensor networks employing the LEACH routing pro-
tocol. [14] It provides 23 extracted features and logs regular activity and four DoS types—TDMA, Grayhole,
flooding, and Blackhole—to support sensor network intrusion detection research

Data Refinement Workflow

Raw data Input: The data used in this research paper were open access. Data were converted from PCAP
files and stored in CSV format. In this step, the Pandas library was employed to read every dataset. The data
were cleaned by deleting null values and duplicate entries after reading them, then reading them for successive
processes. Categorical conversion Datasets were encoded here to transform label values into numeric values,
which need to be processed by neural networks. As the labels were categorical, the One Hot Encoder was used
to express the benign and malicious traffic labels in their numeric representations.

Value Normalisation: Normalization was used to scale the datasets and improve the within-range features.
Standard deviation and mean value variations would otherwise affect the efficiency of this model during train-
ing. The data is normalised using the StandardScaler from sklearn. Preprocessing: Adjust the data so that the
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mean is 0 and the standard deviations are 1. The Standard Scaler was done using the sklearn—preprocessing
library.

* Key Feature Extraction: Feature reduction, or feature selection, is crucial in minimizing the feature set based
on specified criteria. It speeds up model construction and reduces the training computational cost, improving
performance overall. SelectKBest in sklearn. Feature selection was employed in this work. SelectKBest
identifies and selects features with the top scores. The function returns a list of feature names and scores, and
the best features were chosen based on a given K value.

» Dataset partitioning: The data were initially partitioned so that 80% served as the training pool and 20%
was held out for testing. The training portion was then split again into a smaller and a validation segment
for hyperparameter tuning. Stratified K-fold validation was performed with the specified number of splits to
maintain class balance and identify the best division.

3.3 Integrated Deep Learning Model

CNN is designed to extract spatial features, whereas LSTM focuses on learning temporal relations. Leveraging the
ability of the CNN to extract higher-level features from substantial datasets, this model begins with CNN layers.
Initially, the data passes through convolutional layers where filters identify essential features to construct a feature
map. Now the map undergoes maximum pooling to retain dominant features, subsequently the next step is batch
normalization technique.

The resulting output is forwarded to an LSTM layer that identifies temporal characteristics. A dropout layer is sub-
sequently applied to prevent overfitting. This sequence of (CNN)&(LSTM) layers is repeated 3 times with varying
neuron and filter configurations, ending with a completely connected dense layer employing the SoftMax activation
function, which produces the final classification outputs. Figure 3 illustrates the proposed deep learning architecture.
The model architecture consists of repeated blocks, each containing convolution and pooling layers, LSTM, dropout,
batch normalization and fully connected layers, repeated three times.

3.3.1 Convolutional Neural Network

It consists of alternating convolution, activation, and pooling stages that together learn to recognize spatial hierarchies
in data such as images. During convolution, a small filter K of size M x N is slid over the input map I, computing
at each position (r, s) the sum of element-wise products plus a bias c. Here, I(r + m, s + n) denotes the input pixel
at offset (m,n), K, is the corresponding learnable weight, c is a scalar bias added to every location, and o (-)
functions as a nonlinear activator, like ReLU. The resulting feature map Y passes through a pooling layer—often
maxpooling—which reduces each patch to its maximum value, shrinking spatial dimensions, limiting overfitting,
and providing modest translation invariance. By stacking many such layers, a CNN automatically progresses from
detecting low-level edges and textures in initial layers to identifying intricate patterns and objects in deeper layers.

M—-1N-1
Y(T‘,S)IO‘(Z ZKm,n'I(r+m75+n)+C) (1)

m=0 n=0

3.3.2 Batch Normalization Method

It is a method used to mitigate the internal covariate problem, which shifts by ensuring that inputs to each layer main-
tain a consistent distribution throughout training. For every mini batch, activations are first centred by subtracting the
batch mean and then scaled to unit variance, after which they are optionally rescaled and shifted using learnable pa-
rameters. This process not only smooths the loss surface, permitting larger learning rates and faster convergence, but
also provides a regularising effect that can reduce overfitting. In practice, batch normalization is inserted between the
linear (or convolutional) transformation and the nonlinear activation, stabilising gradient flow in deep architectures.

5 Revolutionary Advances in Computing and Electronics: An International Journal



Hasan et al.

CHNN-LSTM Hybrid Neural Network Architecture
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Figure 3: CNN-LSTM Layered Structure

Moreover, if advantageous, the learned shift () and scale () parameters allow the network to recover the orig-
inal representations, preserving its expressive power. Batch normalization enhances training efficiency and model
robustness with minimal computational overhead
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3.3.3 Long-Short Term Memory

LSTM (Long Short-Term Memory) networks consist of memory cells and specially designed gates that determine
what information flows in and out of the network. There are four fundamental LSTM units: the forget gate, tanh
gate, input gate, and output gate, which act in tandem to decide what information to retain and what to discard so
that the network can learn temporal patterns in the data.

In an LSTM, inputs and outputs are vectors with the same dimension as the underlying memory cell; such vectors
are denoted as X (¢). The forget gate takes into account the previous hidden state h(t—1) and the current input X ()
to decide which information from the past should be forgotten or retained. The input gate then determines which
new information from X (¢) should be added to the memory cell.

The cell state C'(¢) is updated by combining the outputs of both the forget and input gates, using the tanh activation
function to regulate the magnitude of the update. Finally, the output gate uses a sigmoid activation to determine
which components of the updated cell state should contribute to the new hidden state h(¢ + 1). This hidden state is
also modulated by a tanh function applied to the updated cell state. As a result, the LSTM network is capable of
efficiently handling both short-term and long-term dependencies in sequential data.

Ot) =0 (b+U x X(t) + W x h(t — 1)) 3)
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Table 2: Confusion Matrix — Describes the conventional confusion matrix employed for assessment
Positive Estimation | Negative Estimation

Observed Positive (A) True Positive (C) False Negative
Observed Negative | (B) False Positive (D) True Negative

3.3.4 Dropout

During training, neurons are randomly deactivated at every epoch using the dropout technique [7]. This method
prevents overfitting in deep neural networks, where the model might otherwise memorize the trained data instead of
generalizing to new inputs. This study incorporated a dropout layer with a dropout rate of 0.2.

3.3.5 Completely Connected Layer

The output layer processes the extracted feature maps. A completely connected layer links every neuron to all
neurons in the previous layer, and it handles classification tasks and utilizes the SoftMax activation function to
generate output probabilities. It converts the processed data into a one-dimensional vector, assigns the inputs to the
correct class, and generates the final output.

3.3.6 Evaluation

The Intrusion Detection System (IDS) performance evaluation relies on confusion matrix metrics presented in Table
2. Normal traffic data leads to misclassification as dangerous behaviour, corresponding to a True Positive (A) in
this environment. A False Positive (B) represents benign traffic, even though it gets classified wrongly as an attack.
The IDS correctly labels malicious traffic when it detects it as True Negative (D), but it incorrectly detects normal
traffic as False Negative (C). The values present in the confusion matrix result in four evaluative metrics, which
combine Detection Rate (DR) and Accuracy (AC), as well as Precision (P) and the False Alarm Rate (FAR). The
accuracy metric calculates the correct identification rate of all recorded data items. The detection rate signifies how
well systems detect genuine attack records. The detection metrics for system accuracy are Precision (Pr), which
represents the capacity to prevent false classification of normal traffic as malicious. The False Alarm Rate (FAR)
describes how many normal sessions are wrongly marked as attacks.

A+D DR — A  FAR = B A

AC =
A+D+B+C’ A+C B+ D’ A+ B

3

Table 3: Performance accuracy of various learning algorithms applied to binary classification using different datasets

Layers | Model CIC-IDS2017 | UNSW-NB15 | WSN-DS
1 CNN 97.53 93.11 99.54
1 LSTM 98.89 93.19 99.63
1 CNN-LSTM 98.51 93.63 99.59
2 CNN 99.26 93.20 99.35
2 LSTM 99.39 93.37 99.35
2 CNN-LSTM 99.60 93.76 99.54
3 CNN 98.96 93.66 99.61
3 LSTM 99.21 93.35 99.61
3 CNN-LSTM 99.61 94.69 99.62
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4 Experimental Setup and Performance

The standardized hardware selection for model testing included a Dell XPS 15 with an Intel(R) Core (TM) i9-13900H
processor 5.40 GHz speed, combined with 32.00 GB system memory. This model development relied on TensorFlow
as the deep learning framework, with Pandas and Keras libraries commonplace in this field.

The evaluation encompassed both multiclass and binary classification tasks. The binary classification scenario cate-
gorised Data instances as “benign” or a specific "attack” class. The multiclass classification extended this to differ-
entiate among several distinct attack categories.

4.1 Different Learning Algorithms Comparisons

The research is concentrated on finding the best model architecture at the beginning. The goal demanded a perfor-
mance benchmark involving independent CNNs and LSTMs, and also tested hybrid models that combined LSTM
elements with CNN components (mainly CNN-LSTM systems). The outcome of this model comparison evaluation
appears in Table 3. Looking at the CIC-IDS binary dataset, the CNN-LSTM architecture with 3 layers achieved the
highest accuracy, reaching 99.61% and the 2-layer CNN-LSTM structures at 99.60The results for the UNSW-NB
binary classification. Again, the three-layer CNN-LSTM model performed best, achieving an accuracy of 94.69%,
and the two-layer CNN-LSTM models reached 93.76%.

The WSN-DS dataset showed a slightly different trend. As shown in Table 3, CNN-LSTM configurations with three
layers and one layer also performed strongly, achieving 99.62% and 99.59% accuracy, respectively. After this initial
comparison of the three learning algorithms, the remainder of the research was focused on the CNN-LSTM hybrid
structure, given its consistently strong performance across multiple datasets.

4.2 Selected Features on CNN-LSTM

In the second phase, the focus shifted to selecting the most effective features for this model. The process began by
experimenting with different feature subsets using the CIC-IDS dataset and a one-layer CNN+LSTM architecture.
Specifically, 5 experiments were run, varying the number of features at 24, 40, 50, 60, and 78. For the UNSW-NB15
dataset, 3 experiments were conducted using 24, 32, and 42 features. Lastly, the model’s performance was assessed
on the WSN-DS dataset using feature sets comprising six, twelve, and eighteen attributes. The outcomes of these
evaluations are provided in the subsequent tables. Feature selection was performed using SelectKBest, which ranks
features based on their scores, and the features with the highest scores were chosen. The results obtained using the
binary CIC-IDS with 24 features achieved an accuracy of 97.33% and a detection rate of 99%. Increasing the number
of features to 40 improved the accuracy to 99.5% and the detection rate to 99.4%. With 50 features, we got the best
results with an accuracy of 99.60% and a 99.55% detection rate. With 60 features, it got an accuracy of 99.7% and
a 99% detection rate, and 78 features got an accuracy of 99.57% and a 99.53% detection rate. Based on these initial
findings, 60 features give the maximum accuracy. However, 50 features gave the best detection rate, the maximum
F1-score and the minimum false alarm rate. Consequently, the experiment continues using fifty features. For binary
classification results on the UNSW.NB15, all 42 available features were used. First, with a single-layer CNN+LSTM,
24 features yielded 93.58% accuracy and 94.6% detection rate. With thirty-two features, the accuracy and detection
rate improved to 93.70% and 94.81%, respectively. The best results were achieved using all 42 features, with an
accuracy of 93.8% and a 94.85% detection rate. Notably, the lowest FAR was observed when using 42 features.
Furthermore, training the model with 42 features required less time than training with 32 features. Therefore, further
testing was conducted using all 42 features from the UNSW.NB15 dataset. In the feature selection process using the
binary WSN-DS dataset, a model using 18 features performed optimally. The proposed configuration demonstrated
strong performance, achieving 99.59% accuracy and a 98.28% detection rate. For comparison, models using 12
and 6 features achieved accuracy scores of 98.12% and 97.61%, with corresponding detection rates of 88.90% and
97.05%, respectively. Furthermore, the IDS model was also trained using the complete feature set of the WSN-DS
dataset.

The evaluation of different optimization algorithms, which is compared with Adam optimizer, produced the results
mentioned above, with a model based on RMSprop. When applying RMSprop to a one-layer CNN-LSTM model,
the following accuracy and detection rates were observed: 99.53% and 99% for the CIC-IDS dataset, 93.58% and
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93% for the UNSW.NB15 dataset, whereas 99.61% and 98.28% for the WSN-DS dataset [4]. Given the consistently
higher accuracy and detection rates achieved with the Adam optimizer, it was selected for subsequent experiments.

4.3 Evaluating CNN-LSTM Architectures: Layer Configurations and Hyperparameters

The impact of different layer arrangements, neuron counts, fully connected (FC) layers, and dropout rates on model
performance was investigated. For the CIC-IDS dataset, the best testing accuracy (99.61%) was achieved by a three-
layer CNN-LSTM model using a dropout rate of 0.2 and one FC layer. Close behind were a two-layer model (dropout
rate of 0.2 and two FC layers) with an accuracy of 99.56%, and a single-layer model (dropout rate of 0.2 and two FC
layers) with an accuracy of 99.57%.

Analyzing validation accuracy, loss, and False Acceptance Rate (FAR) more closely, the three-layer configuration
emerged as the best, yielding identical testing and validation accuracy (99.61%) and the lowest FAR (0.11).

For the UNSW-NB15 binary dataset, the single-layer model with a dropout rate of 0.2 and one FC layer achieved
the highest testing accuracy (93.72%). However, the three-layer CNN-LSTM model, despite having a slightly lower
testing accuracy, outperformed in validation accuracy (93.8%), showed the lowest loss (11), and had the smallest
FAR (6.2), making it the more reliable choice overall.

In experiments using the WSN-DS dataset, the highest testing accuracy was achieved by a single-layer CNN+LSTM
model with a dropout rate of 0.5 and two FC layers. Nonetheless, when prioritizing validation accuracy (99.61%),
loss, and FAR (0.90), the three-layer configuration again proved superior, demonstrating its value even without the
top initial testing accuracy.

Across all datasets, the three-layer CNN-LSTM architecture [15] consistently provided a strong balance of high
accuracy, low loss, and low FAR, indicating that it can serve as a dependable model choice for various intrusion
detection tasks [16].

4.4 CNN-LSTM model utilizing cross-validation on Stratified K-Fold

After settling on the best setup for the model, including the number of layers, neurons, rate of dropout, and fully
connected layers, the next step involved tuning the Stratified K-Fold validation parameter. Let’s dive into the findings.
CIC-IDS Results: Table 4 breaks down the performance metrics for the CIC-IDS dataset, looking at both binary
(normal vs. attack) and multiclass (specific attack types) classification. It hits a peak accuracy of 99.65% at both
K=8 and K=4. Regarding snagging those attacks, it gives a top 99.71% detection rate for binary & a whopping
99.96% for multiclass, both at K=8. The minimum false alarm rate (FAR) was 0.1, achieved at K=10 for multiclass
& K=8 for binary. Precision values and F1 score are also included in the table for a complete picture.

* UNSW-NBI15 Results: Jumping over to the UNSW-NB15 dataset, Table 4 highlights a clear difference in
performance between binary and multiclass classification. The best binary accuracy, 93.96%, showed up at
K=6, while multiclass peaked at 82.3% at K=4. Detection rates followed suit, with K=8 giving us the best
numbers: 94.54% for binary and 82.42% for multiclass. The lowest FAR here was 2.2 at K=4 for multiclass
and K=8 for binary.

* The WSN-DS simulation provides the following results. Table 4 demonstrates deviation in K’s performance
level. Model performance reached maximum accuracy levels in binary (99.68%) and multiclass (99.44%)
operations when K reached 10. The K=10 level achieved 98.15% accuracy in binary classification & 98.84%
accuracy in the multiclass task. Raw values for the lowest FAR measurements reached 0.11 at K=6 in binary
identification and 0.67 at K=2 in the case of multiclass categorization

* Visualizing the Impact of K: Figures 4 and 5 give us a visual look at how the model performed with the CIC-
IDS2017 data. It consistently shows high detection rates across different attack types, a good sign of robust
implementation. Although raising the K-Fold value led to minor variations in detection rates, the SFH-Partial
approach consistently maintained minimum false alarm rates throughout

Figure 6 shows the detection rate for different kinds of attacks in the UNSW.NB15. This model generally performed
well, especially for attack types with plenty of examples. However, Worm and DoS attacks proved trickier, with
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detection rates dropping close to zero as K increased. Based on the confusion matrix, the model often misclassified
these as reconnaissance attacks. Figure 7 zooms in on the FAR values for these same attack types, showing that DoS
attacks had the highest FAR. Finally, Figures 8 and 9 illustrate the results from the WSN-DS data. Found out that
increasing the no. of K-Folds improved the detection of Black hole attacks but hurt the detection of Grayhole attacks.
Other attack types showed similar detection rates across different K-Fold values. Overall, the results weren’t as good
as expected, so we improved the model at catching all kinds of attacks.

4.5 CNN-LSTM Performance: Epoch Analysis

After assessing the influence of K-Fold cross-validation, attention was turned to evaluating the impact of varying the
number of training epochs. Building upon prior experiments, we maintained a K-value of 8 for these tests. After
assessing the influence of K-Fold cross-validation, attention was turned to evaluating the impact of varying the num-
ber of training epochs. Building upon prior experiments, we maintained a K-value of 8§ for these tests. Figures 10 &
11 detail the observed effects of increasing the epoch count on each detection rate and False Alarm Rate for binary
classification tasks. Findings indicate that the data of UNSW-NB15 was susceptible to several epochs. As depicted
in Figure 10, the detection rate improved from 94.53% at five epochs to 95.81% at sixty epochs. In contrast, the CIC-
IDS2017 dataset exhibited accuracy values of 99.7% and 99.93% at 5 and 60 epochs, respectively, while WSN-DS
showed 98.14% and 97.86%. Examination of FAR values (Figure 11) reveals that UNSW-NB15, compared to the
other datasets, yielded the highest FAR values across the tested epoch range

Figures 12 and 13 illustrate the performance of multiclass & binary classification. The UNSW.The NB15 dataset con-
sistently demonstrated the poorest detection performance and maximum false alarm rates. Additionally, the figures
indicate that increasing the no. of epochs had minimal impact on the performance of each CIC-IDS and WSN-DS
dataset.

The confusion matrices for the three datasets reveal that the model generally achieved accurate classification across
most record types. However, a notable trend was observed in CIC-IDS: PortScan attacks were frequently misclas-
sified as regular traffic. In UNSW-NB15: Exploits, Fuzzers, DoS, and Worms attacks were often misclassified as
Reconnaissance attacks. Conversely, WNS-DS demonstrates the capability of the model to accurately classify all
kinds of records in the dataset, accurately predicting most of the entries in each group.

Effect of K-Fold Cross on Detection Rate (CIC-IDS2017)
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Figure 4: K-Fold impact on detection accuracy (CIC-IDS)

5 System Performance Review

To ascertain the efficacy of this hybrid model, its accuracy was benchmarked against existing cutting-edge method-
ologies. The results, summarized in the subsequent tables, illustrate that the model attains a superior level of overall
performance when compared to other recent investigations. Specifically, a comparative analysis was performed uti-
lizing a dataset configured with 5 epochs, a K value of 8, and a focus on binary classification. Starting with the
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False Alarm Rate Heatmap (K-Fold Cross Validation)
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Effect of K-Fold cross on detection rate based on UNSW-NB15 dataset
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Figure 6: K-Fold impact on detection accuracy (UNSW.NB15)

dataset UNSW.NB15, the model showed improved performance compared to various machine learning and deep
learning models. The CNN+LSTM-based model achieved a 93.78% accuracy rate, which is markedly higher than
the 85.77% of the Deep Belief Network (DBN), and then with the Deep Neural Network (ICVAE-DNN) achieving
82.42% accuracy, as well as higher than the Support Vector Machine model [4]. Notably, CNN+LSTM also exhibited
the minimum False Alarm Rate (FAR), yielding similar results. While the detection rate was marginally lower than
that of other specific models, the collective performance substantiates the superiority of the CNN & LSTM layer
stacking approach when evaluated against the UNSW-NB15 dataset.

Regularization through dropout and normalization techniques contributed towards improved model Broader ap-
plicability and stability, as the classifier trained on CIC-IDS for binary tasks demonstrates considerable robustness.
The convolutional and recurrent hybrid model architecture achieved an impressive precision of 99.65%, exceeding
the Fully Connected Neural Network (FCNN) results. Compared to Rep Tree (96.68%) and kNN (80.17%), the
model achieved 85.24%. Moreover, the CNN+LSTM model showcased better false alert frequency and detection
performance than other assessed models. Performance outcomes using the WSN-DS dataset. The proposed model
achieved a correctness rate of 99.59%, outperforming alternative Learning algorithms, for example, Logistic Re-
gression (LR) at 97%, Naive Bayes at 83.20%, and Decision Tree (DT) at 99.20%. The CNN+LSTM combined
model also provides a peak detection rate of 97.78%. These results highlight the efficiency of this model, which can
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False Alarm Rate Heatmap (K-Fold Cross Validation)
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Figure 7: K-Fold impact on FAR (UNSW.NB15)

Effect of K-Fold cross on detection rate (WSN-DS)
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Figure 8: K-Fold impact on detection accuracy (WSN-DS)

be attributed to the cascaded CNN & LSTM layers followed by DNN, meticulous dataset preprocessing, optimized
feature selection, Incorporating dropout regularization, and batch normalization methods.

6 Discussion

This work proposed building a much more powerful intrusion detection system (IDS) for detecting benign and
malicious traffic with greater accuracy. An essential challenge in this space is that there have been many attacks
in recent years, and IDS systems must evolve to stay relevant. Existing IDSs yield many false positives that can be
overwhelming and lead to incomplete detection of actual threats. Furthermore, training data accumulated in previous
research may become outdated and thus less predictive of new attack vectors. To address these challenges, a new
system architecture was introduced that merges CNN'’s feature extraction abilities and the temporal dependency
modelling of Long Short-LSTM networks. This combined approach uses two different ways of looking at network
traffic data. The three- The layer model uses CNNs and LSTMs to find intrusions while keeping false alarms to a
minimum. Before training, the data went through a careful preprocessing stage, including encoding, normalization,
and feature selection, to help the model learn better. This refined data is then fed into the first CNN layer, which
is good at picking out temporal patterns. The system is tested using the CIC-IDS2017 dataset over five training
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K-Fold vs False Alarm Rate (WSN-DS)
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Figure 10: Effect of epoch count on binary classification detection

cycles. The results were auspicious. When classifying traffic as either an attack or not, the system achieved an
accuracy of about 99.66%. When identifying specific types of attacks, the accuracy was still high at 99.61%. The
accuracy and Fl-scores confirmed the model’s accuracy & reliability, with an attack detection rate of 99.71% in
binary classification and 99.96% in multiclass classification. The false positive rates were relatively low, at 0.10%
and 0.12% in binary and multilabel classification scenarios. The system’s ability to work using the dataset UNSW-
NBI1S5 was also evaluated. The results were pretty good! It gives about 94.54% accuracy when classifying things
into two categories (binary classification) and around 82.42% when classifying into multiple categories (multiclass
classification). The WSN-DS was also utilised as another way to estimate performance. Interestingly, the results
with this dataset were similar to what was evaluated with the CIC-IDS2017 dataset. It was highly accurate, detected
things well, and didn’t give us many false alarms. In conclusion, these experimental results suggest that this hybrid
CNN+LSTM model offers a practical and effective way to develop more accurate and reliable IDS.

7 Conclusion and future works

In this study, a tool was introduced that uses spatial and sequential deep learning algorithms (LSTM and CNN) to
identify suspicious activity in networks. The model uses CNN’s capacity to extract spatial attributes and LSTM’s
ability to describe time-based patterns by integrating the CNN and LSTM model layers. Different techniques were
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Effect of Changing Epoch on False Alarm Rate (Binary Classification)
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Effect of Changing Epoch on Detection Rate (Multiclass Classification)
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Figure 12: Effect of epoch count on multiclass classification detection

used, like feature standardization, regularization through dropout, and batch wise normalization to increase the ef-
ficacy of the architecture. Three benchmark datasets—the UNSW-NB15, the CIC-IDS, and the Wireless Sensor
Networks (WSN) Data Set, each including malicious and non-harmful traffic data, were used to train and evalu-
ate the system. Individual and hybrid models such as Convolutional Neural Networks, Long Short-Term Memory
networks, and CNN+LSTM architectures were used to assess how these datasets behaved. After that, two-class
and multiple class classification tasks were used to evaluate the merged model. For the CIC-IDS, Wireless Sensor
Network (WSN) and UNSW.NB15 datasets, the model achieved binary classification accuracy scores of 99.65%,
94.54%, and 99.68% during 5 training epochs. Overall identification and false alarm rates were encouraging, de-
spite less successful performance against specific threat types, such as web-based attacks in CIC-IDS and worms
or backdoor attacks in UNSW-NB15. Furthermore, the impact of increasing training epochs and cross-validation of
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Effect of Changing Epoch on False Alarm Rate (Multiclass Classification)
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Figure 13: Effect of epoch count on multiclass classification FAR
Table 4: Performance comparisons across the datasets
Dataset Method Accuracy (%) | FAR (%) | Detection Rate (%)
UNSW-NBI15 | SVM 62.43 * 88.59
UNSW-NB15 | ICVAE-DNN 89.09 19.02 95.69
UNSW-NB15 | DBN 85.78 30.33 98.91
UNSW-NB15 | CNN-LSTM 93.79 6.01 94.54
CIC-IDS KNN 80.92 * 91.29
CIC-IDS REP Tree 96.68 1.15 94.48
CIC-IDS MLP 85.25 7.36 77.84
CIC-IDS CNN-LSTM 99.65 0.11 99.71
WSN-DS LR 97.00 * 77.71
WSN-DS NB 83.11 * 76.51
WSN-DS DT 99.11 * 95.11
WSN-DS CNN-LSTM 99.59 * 97.78

K-Folds was examined. The model’s performance first improved before plateauing, according to the results. By tack-
ling issues related to poor detection rates and high FARs brought on by class imbalance in the datasets, subsequent
developments will prioritize refining detection capabilities and minimizing false alarms.
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