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ABSTRACT 

The increasing amount of extreme weather conditions and the increasing complexity of cyber-

physical threats pose a significant threat to the resilience of modern power distribution systems. The 

conventional approaches to restoration rely on centralised control and information flow across the 

globe and therefore, are susceptible to failure at one point and delays in the event of a major disaster. 

This paper presents a decentralised Multi-Agent Reinforcement Learning (MARL) algorithm with 

Graph Neural Networks (GNNs) to restore the power grid in real time and independently. The 

inductive bias of GNNs allows every substation agent to learn to jointly plan switching actions and 

power dispatch depending on local topological characteristics and neighbour messages, eliminating 

the need to have a central supervisor. The suggested framework is assessed using some IEEE standard 

test systems under various load stressors, including N-k contingencies, blackouts in communication, 

and adversarial False Data Injection (FDI) attacks. The methodology is aimed at creating a policy that 

is agnostic to grids and puts forward the priority of restoring critical loads, but assuring voltage 

stability by the use of localised spatial intelligence. This work shows the theoretical and practical 

benefits of moving from complex centralised optimisation to a scalable, O(N) decentralised graph-

inference model. By demonstrating that learned policies can transfer across different topologies, this 

research offers a strong foundation for the next generation of self-healing, “dark-start” resilient smart 

grids that can effectively handle the challenging environment of post-disaster recovery. 

Keywords: Multi-Agent Reinforcement Learning, Graph Neural Networks, Power System 

Restoration, Decentralised Control, N-k Contingency, Cyber-Physical Security. 

1. Introduction 

1.1 The Criticality of Power System Resilience in the Modern Era 

Global Power Grid is known to be the largest and most complex structure ever built by 

humankind. It is an invisible pillar of modern society. It enables numerous activities such as 

industrial production, health service provision, telecommunication, and water purification. 

Unfortunately, this enormous structure is under increasing attack. Global Boiling has led to the 

increased frequency and severity of extreme weather incidents such as hurricanes, wildfires, ice 
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storms, and floods which destroy and disable the physical structures (transmission corridors) of 

the infrastructure. Extreme weather also makes traditional protection plans useless. 

At the same time, the move to a decentralized Smart Grid system increases the attack surface for 

enemy cyber systems. A power outage is no longer an occasional nuisance. It is a threat. 

Examples are the 2021 Texas power crisis and the ongoing blackouts in Ukraine. Grid breakdown 

has profound socio-economic impacts and can lead to loss of life. Therefore, the postulate of the 

utility operators has shifted from reliability of the grid to resilience, being the ability of the grid to 

endure, adjust and quickly recover from drastic damage. It is to be noted that in this instance, the 

restoration time and the level of automation employed to restore the system balance, are more 

than just indicators of a technical aspect, but are, in fact, fundamental to the system. 

1.2 The Traditional Restoration Paradigm: Strengths and Failures  

In the last fifty years, the restoration of power systems has been treated as a centralised 

optimisation problem. In dealing with a blackout situation, one can use Bottom-Up or Top-Down 

approach. In a bottom-up restoration, or Black-Start, islands of power are formed around black-

start-eligible generators. These islands are expanded one at a time, synchronised, and merged into 

a fully stable system. 

Traditionally, these were controlled through Centralised Restoration Schemes (CRS). This was 

formulated as a MINLP problem, where the objective was to restore the maximum possible load 

given the power flow equations, voltage control, and transient stability, to be satisfied.CRS works 

theoretically under, so to say, Blue Sky conditions (minor outages of predictable nature). 

However, it is almost certain to fail under “Dark Sky” disasters. The system is severely 

constrained through the following: 

1. The Curse of Dimensionality: Given a grid comprised of N buses and L transmission 

lines, the number of potential switching configurations is equal to 2𝐿. When L increases tothe 

order of thousands, finding a globally optimal solution by exhaustively searching this space in 

real-time is computationally infeasible, and it takes about hours for the algorithm to converge, 

while only seconds are available for the task. 

2. Centralised Vulnerability: CRS needs a high-bandwidth communication link to and from 

every remote terminal unit (RTU) in the control center and field. During a disaster, if the 

central hub or the communication fibre is cut, the brain of the grid is effectively lobotomized, 

and local substations lose control. 

3. The Static Nature of Optimisation: Traditional MINLP solvers are considered “one-shot” 

solutions. These solvers do not have the capability to learn from previous failures. In case a 

restoration path is unsuccessful because of a secondary fault or unexpected impedance, the 

solver has to go back to the beginning of the optimisation process, thereby losing invaluable 

time. 

1.3 The Rise of Artificial Intelligence and the Vector-Space Limitation 

To lessen these disadvantages, scientists have turned their attention to Reinforcement Learning 

(RL). Different from static optimisation, RL agents learn a Policy (π), a way of associating a state 

with an action, by trial and error in a simulated environment. After training a policy, the decision 

making process is almost instantaneous, as it requires only one “forward pass” through a neural 

network. Nevertheless, the so called first-generation “Vector-based” RL (typically utilising 

standard Multi-Layer Perceptron) has in general, not been able to make the bridge of transition 

from academic research to the industry sector. The reason lies in the Lack of Inductive Bias. A 

conventional neural network views a power grid as a simple vector of numbers. It does not have a 



Pradhan et al. 

 

eISSN : 3107-8540 38 RACE 

 

clue that Bus A is physically connected to Bus B. If the topology changes (for instance, a line is 

blown down by a storm), the vector representation changes entirely, and the RL agent gets 

“confused.” Hence, it is obligatory to constantly retrain the system for each change in the grid 

layout, which is quite a challenge for a highly dynamic and unpredictable system like a power 

grid under stress. 

1.4 The PowerGNN Framework: Spatial Intelligence and Decentralised Coordination 

Our proposed approach, which is termed PowerGNN, fundamentally re-imagines the power grid 

not as a static set of variables, but as a dynamic topological manifold. In this case, a model of a 

Local Observer driven by Graph Neural Networks (GNNs) and Multi-Agent Reinforcement 

Learning (MARL) is employed rather than a model of a Global Observer to achieve true 

resilience. The major technical development is the Graph-Inductive Bias. Through a GNN, all the 

agents 𝑖  (a substation or DER) carry out a localised calculation that sums features xj of its 

neighbours 𝑗 ∈  𝑁 (𝑖) . The agent produces a latent topological embedding hi through 

severalstages of graph convolutions. Such embedding provides the context of the bus into the 

grid, enabling differentiation between sturdy mesh connections and fragile radial branches. This 

space knowledge empowers the agent to make decisions that are physically informed, i.e. which 

breakers to close, with the priority of paths providing the greatest stability and least loss. 

Moreover, a Decentralised Coordination Protocol is used in our framework. Agents do not need to 

be aware of the state of the overall grid; instead, they rely on a Message-Passing system to convey 

their plans and local perceptions. A variant of Multi-Agent Deep Deterministic Policy Gradient 

(MADDPG) is applied, with the Critic being enhanced with the help of graph-attention. This 

allows Agent A to understand the potential impact of Agent B’s actions on the shared voltage of 

the corridor, facilitating a coordinated, multi-island restoration strategy without a central 

supervisor. 

1.5 Resilience through Consensus and Zero-Shot Generalisation 

One of the major benefits of this architecture is that it is immune to disaster scenarios’ “chaos” in 

an intrinsic manner. Since the policy is developed as a local function of the graph, the PowerGNN 

considers the disappearance of communication links or the crushing of a part of the network 

simply as “masked edges.” Thus, the power network becomes a kind of “self-healing” organism 

in which islands of intelligence arise spontaneously. 

In addition, the GNN architecture is akin to a natural ”filter” against adversarial attacks, such as 

False Data Injection (FDI). Through Spatial Consensus, if a malicious or faulty node sends an 

unreasonable voltage value; its neighbours deduce the physical outlier through their own GNN 

aggregations and thus isolate the noise to keep the system safe. 

Lastly, the biggest challenge in AI for power systems that is being dealt with here is 

Generalisation. It is shown that PowerGNN, after being trained on a standard IEEE test system, 

can be used “Zero-Shot” on a different, bigger grid topology. The model attains a degree of 

universality that has never been seen before in decentralised RL by understanding the underlying 

physics of the graph rather than the node-specific parameters. This research confirms this strategy 

through six comprehensive experiments, namely N-k contingencies, communication silence, 

scalability, stochasticity, security, and transferability, which together constitute a strong 

foundation for the future fully autonomous, self-healing grid. 

2. Literature Review 

The challenge of restoring power to a compromised grid has evolved from a deterministic 

optimisation task into a complex, multi-agent coordination problem. This literature review traces the 
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trajectory of restoration methodologies from classical mathematical programming to modern 

decentralised reinforcement learning and graph-theoretic models. 

2.1 Classical Restoration Frameworks and Their Limitations 

The initial study in power system restoration was subject to the fact that the need to control the 

process of Black-Start was imminent, i.e. to restore the grid to service with a state of complete 

collapse with the help of non-synchronised generation units. The physical classification of power 

system stability, so delicate in keeping the balance between voltage and frequency constant when 

the big inductive loads are reconnected, started with the foundational work by Kunduret al.[1] 

where the authors aimed to classify the stability in relation to the reconnection process during the 

reconnection of the big loads. This was historically a Mixed-Integer Non-Linear Programming 

(MINLP) problem, as surveyed by El-Amary and Wang [3]. 

Although these centralised optimisation schemes (CRS) are mathematically rigorous, they have 

very high computational intricacy. According to Liu et al. [4], the number of possible optimal 

switching sequences to use in an IEEE 118-bus system or 300-bus system increases 

exponentially, i.e. O(2𝐿) and real-time response is almost impossible in the case of cascading 

failures. 

Furthermore, Chen et al. [5] highlighted that modern grid resilience metrics must go beyond 

simple “Reliability” to include “Adaptability,” a quality often lacking in static, one-shot 

optimisation solvers that cannot learn from the stochastic nature of disaster-induced outages. 

2.2 The Shift toward Data-Driven Resilience 

The power grid received a new paradigm from Deep Reinforcement Learning (DRL), powered 

largely by the success of Deep Q-Network (DQN)[6] and Deep Deterministic Policy 

Gradient(DDPG) [7]. Unlike traditional solvers that require online training, DRL agents do not 

need it as they learn a control policy offline through millions of simulations and thus can do 

instantaneous inference in the real situation. Zhang et al. [10] surveyed the applications and 

concluded that DRL is a perfect fit for highly dimensional and non-linear environments like the 

smart grid. 

Still, the most frequently cited problem of the DRL research is the issue of a “Black Box” that 

the authors of standard DRL. Grid data that is processed by traditional reinforcement learning 

structures, e.g., Proximal Policy Optimisation (PPO) [8], is regarded as a simple vector. In this 

way, the location-based interrelations of the electrical networks are being reconstructed. Panteli 

and Mancarella [2] argued that if a restoration plan is to be resilient, it must be a ‘spatially aware’ 

one - understanding that the impact of the fault is local, it goes with the transmission lines, and is 

not a global, uniform variable. 

2.3 Decentralisation and Multi-Agent Coordination 

The centralised control model has become a major obstacle as the grid incorporates more 

Distributed Energy Resources (DERs). Chen et al. [19] have shown that decentralised restoration 

methods, in which local micro grids make switching decisions independently, are thus 

considerably more powerful in scenarios of communication failures. Moving away from the 

center towards the “Edge” of the grid means that Multi-Agent Reinforcement Learning (MARL) 

is needed. 

The pioneering work on MADDPG by Lowe et al. [9] was the first to put forward the idea of 

centralised training with decentralised execution (CTDE), which is now considered the most 

effective way multi-agent coordination can be achieved. Zhang et al. [16] were the first to go 

beyond this, establishing that MARL can handle cooperative tasks agents sharing a common goal 
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such as restoring a shared voltage corridor without a central supervisor. Jiang et al. [20] have 

gone even further in this direction by using ideas from micro-grid formation to demonstrate that 

frequency can be kept more stable by decentralised agents than by centralised controllers in 

islanded modes. 

2.4 The Emergence of Graph Neural Networks (GNNs) 

One of the most important breakthroughs in grid AI over the last few years is the adoption of 

Graph Neural Networks (GNNs). As the power grid is a physical graph, GNNs deliver an 

“Inductive Bias” that is not present in standard neural networks. Graph Convolutional Networks 

(GCNs) and Graph Attention Networks (GATs) were formally defined, respectively by Kipf and 

Welling [11] and Veliˇckovi´c et al. [12]. This model enable “message-passing” between nodes, 

which is similar to the way electricity flows through transmission lines. 

In the power systems domain, Hamilton et al. [14] proposed the idea of inductive representation 

learning, which is quite essential for managing N-k contingencies. The property of a GNN being 

able to recalculate the grid manifold without a new training, if a line is removed, is called 

Permutation Invariance. On the way to their goal, Biagioni et al. [17] and Yang et al. [18] have 

been using GNNs in Optimal Power Flow (OPF) and service restoration scenarios, respectively. 

Their findings demonstrate that GNN-based agents are able to achieve higher speed and accuracy 

than vector-based agents when the grid topology changes. 

2.5 Cyber-Physical Security and Adversarial Resilience 

Considering that grid intelligence is moving towards the edge, the risk of cyber-attacks is getting 

higher. Liu et al. [21] and Kosut et al. [23] have described the damaging potential of False Data 

Injection (FDI) attacks in detail. In these attacks, a set of compromised sensors deceives the 

control system to trigger a blackout. Yan et al. [24] have proposed supervised learning for FDI 

detection; however, these techniques generally fail in the case of high-stress disaster scenarios 

where the data is noisy. 

The most recent research works show that the “Spatial Consensus” of GNNs provides a natural 

defence. Zhou et al. [15] argued that GNNs gather features from the neighbourhood, hence 

making them inherently immune to outliers. Suppose a node indicates a fraudulent voltage value; 

the GNN’s attention mechanism derived from the study of Veliˇckovi´c [12] can reduce that 

node’s influence. This research direction is a vital bridge between grid restoration and cyber-

resilience. 

2.6 Scalability and Zero-Shot Generalisation 

A chief difficulty faced by AI in power systems is the jump from small test beds (like the 

IEEE14-bus) to large-scale utility grids. Two papers by Zimmerman et al. [25] and Thurner et al. 

[26] yielded the open-source tools (MATPOWER and ‘pandapower’) that have permitted the 

simulation of vast networks. Centralised RL models, however, are still unable to scale to more 

than a few hundred nodes. 

Wang and Moore [28] have recently proposed a scalable GNN method for state estimation, 

demonstrating that GNNs have O(N) complexity. Their finding is in line with the work of Gilmer 

et al. [13] on message-passing neural networks, which maintained that localised graph operations 

are the only way to get “Generalisation”. The ultimate objective, according to the ideas of 

Blaabjerg et al. [29] and Justo et al. [30], is a “Universal Control Policy” capable of being trained 

on synthetic grids and subsequently being used on any real-world topology; a PowerGNN 

framework current research is progressing towards. 

2.7 Identifying the Research Gap 
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While the different parts of decentralised MARL and GNNs have been separately investigated, 

there is an essential point that is missing: the combination of these technologies into one single 

framework for (𝑁 − 𝑘) disaster restoration has not been figured out yet. Most of the current 

works only focus on either small scale micro-grid formation or steady state optimisation under 

perfect communication. 

Research is scarce on modelling physical destruction (𝑁 − 𝑘) , communication silence, and 

adversarial FDI attacks happening simultaneously in a single autonomous model. Besides that, 

the “Zero-Shot” transferability of restoration policies to radically different IEEE test systems is 

still mostly unverified. Our project, PowerGNN, is intended to become a resource that offers a 

scalable, resilient, and grid-agnostic solution for future autonomous power systems, thus filling 

the gap. 

3. Methodology 

The structural integrity of the proposed restoration framework rests upon the synergy between graph 

topology and sequential decision making. Unlike traditional optimisation, our method does not seek a 

static solution but learns a dynamic control policy. 

3.1 Graph-Theoretic Mapping of Electrical Physics 

The power system is defined as a directed, attributed graph G = (V, E). In this formulation, 

the physical constraints of the grid are embedded directly into the graph structure. 

3.1.1 Node Attribute Engineering 

Here, every bus 𝑖 ∈  𝑉  is symbolised by an attribute vector 𝑥𝑖
(𝑡)

∈ 𝑅𝑑 . In the case of the 

restoration task, this vector is extended with both temporal and categorical predictors: 

𝑥𝑖
(𝑡)

= [|𝑉𝑖|, θ𝑖 , P𝑔,𝑖, Q𝑔,𝑖, P𝑑,𝑖, Q𝑑,𝑖, S𝑖, τ𝑖 ].    (1) 

Where: 

• |V𝑖|, θ𝑖: The complex voltage state. 

• P, Q: Active and reactive power flow balances. 

• S𝑖∈ {0, 1}: Connectivity status (1 if connected to a “live” slack bus, 0 if is landed). 

• τ𝑖: Time since outage, used to model cold-load pickup (CLPU) effects. 

• C𝑖: A priority categorical variable (Critical, Industrial, Residential). 

3.1.2 Edge Admittance and Topology Dynamics 

The edges (𝑖, 𝑗) ∈ 𝐸  represent transmission lines, transformers, and circuit breakers. Each 

edgecarries an attribute vector 𝑒𝑖𝑗  containing the complex admittance 𝑌𝑖𝑗 = 𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 and 

thecurrent switch status 𝑢𝑖𝑗 ∈  {0, 1}. 

In an 𝑁 − 𝑘 contingency, the graph is pruned: 𝐺′ =  (𝑉, 𝐸 \ 𝐸𝑓𝑎𝑢𝑙𝑡). The methodology must 

remain invariant to these structural subtractions, a property inherently satisfied by the GNN’s 

neighbourhood aggregation. 

3.2 Decentralised Partially Observable Markov Decision Process (Dec-POMDP) 

Grid restoration is a sequential problem in which action on time t will influence stability on 

time (𝑡 + 1). This is formalised as a Dec-POMDP defined by the tuple (𝐼, 𝑆, 𝐴, 𝑃, 𝑅, 𝛺, 𝑂, 𝛾). 

3.2.1 Receptive Fields and Local Observations 
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In a decentralised setting, agent i does not have access to the global state S. Instead, it 

operates on a local observation 𝑜𝑖. The k-hop receptive field is defined as: 

𝑁(𝑖)  =  {𝑗 ∈  𝑉 ∶  𝑑𝑖𝑠𝑡(𝑖, 𝑗)  ≤  𝑘}(2) 

By restricting the observation to a k-hop neighbourhood, it is ensured that the computational 

complexity for each agent remains constant penalising. Hence, the number of buses in the 

grid, whether they are 39 or 30,000, will not affect the complexity. This is the fundamental 

principle of our 𝑂(𝑁) scalability. 

3.2.2 Action Mapping for Restoration 

The action space Ai is a hybrid of discrete and continuous variables: 

• Topological Action (𝑢𝑖𝑗): Determining which breakers to toggle to form new energised 

paths. 

• Resource Action (∆𝑃𝑔,𝑖): Adjusting the ramp rates of local generators to prevent frequency 

collapse when a large cold-load pickup is energised. 

• Voltage Regulation (𝑄𝑔,𝑖): Injecting reactive power to support the voltage profile ofthe 

newly formed island. 

3.3 The PowerGNN Neural Architecture 

The central technical contribution of this work is the PowerGNN layer. Unlike standard 

Convolutional Neural Networks (CNNs) that operate on grids or MLPs that operate on vectors, 

the PowerGNN operates on the sparse admittance manifold. 

3.3.1 Message Passing and Aggregation Logic 

Each agent performs a message-passing operation at every layer l. The hidden 

representationℎ𝑖
(𝑙)

 is updated via: 

𝑚𝑖
(𝑙+1)

= ∑ 𝑀𝐿𝑃𝑚𝑠𝑔(ℎ𝑖
(𝑙)

, ℎ𝑖
(𝑙)

, 𝑒𝑖𝑗)

j∈N (i)

 

 

ℎ𝑖
(𝑙+1)

= 𝐺𝑅𝑈(ℎ𝑖
(𝑙)

, 𝑚𝑖
(𝑙+1)

) 

Here, 𝑀𝐿𝑃𝑚𝑠𝑔 learns to approximate the impact of line impedances on voltage drops. Byusing 

agated recurrent unit (GRU) as the update function, the model maintains a memory ofthe 

restoration sequence, preventing oscillatory switching actions. 

3.3.2 Graph Attention Mechanism (GAT) 

To handle the varying importance of different neighbours (e.g., a line connected to a massive 

generator is more critical than a line to a small load), the multi-head attention is implemented 

as: 

𝑎𝑖𝑗 =
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇 [𝑊ℎ𝑖 || 𝑊ℎ𝑗 ]))

∑ 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖  || 𝑊ℎ𝑗 ]))k∈N (i)
 

This attention coefficient 𝑎𝑖𝑗  effectively acts as a dynamic weight for each edge, allowing 

theagent to focus its computational resources on the most critical power flow corridors. 

3.4 Multi-Agent Optimisation: Reward Engineering 
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Training a MARL system for power grids requires a reward function that acts as a “differentiable 

power flow engine.” 

3.4.1 Component Breakdown 

The scalar reward r𝑡 is computed as: 

r𝑡 = ω𝑝 ·
∑ 𝑃𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑

∑ 𝑃𝑡𝑜𝑡𝑎𝑙
−ω𝑣 ∑(|Vi|  −  1.0)2−ω𝑠. N𝑠𝑤𝑖𝑡𝑐ℎ 

Load weighting: Assignment of priority coefficients to buses based on their critical nature 

(e.g., hospitals ×10, residential ×1). Soft constraints: Instead of hard-failing an episode when 

voltage exceeds 1.05 p.u., a smooth quadratic penalty is applied. This provides the gradient 

information necessary for the RL agent to learn the boundary of the safe operating region. 

3.4.2 Addressing Non-Stationarity 

In MARL, the environment is non-stationary because every agent is learning simultaneously. 

Agent A’s optimal policy depends on agent B’s current policy. To solve this, centralized 

training with decentralized execution (CTDE) is utilised. During the training phase, the critic 

network has access to the global state and the actions of all agents (𝑠, a1, . . . , a𝑛). During 

execution (disaster response), only the actor (the PowerGNN) is used, relying solely on local 

graph observations. 

3.5 The Simulation-to-Reality (Sim2Real) Pipeline 

A critical aspect of our methodology is the integration with the ‘pandapower’ engine. 

3.5.1 Power Flow in the Loop 

At every RL step, the chosen actions are sent to a Newton-Raphson power flow solver. Action 

validation: If an agent attempts to close a switch that would create a short circuit or an 

unsynchronised connection, the environment overrides the action and applies a large negative 

penalty. Transient approximation: While full electromagnetic transient (EMT) simulation is 

too slow for RL training, the transient stability is approximated by monitoring the  
𝑑𝑉

𝑑𝑡
  and  

𝑑𝑓

𝑑𝑡
 

(ROCOF) values during the islanding phase. 

3.5.2 Stochastic Curriculum Learning 

To ensure the agents do not just memorise the IEEE 39-bus topology, a stochastic curriculum 

is implemented: 

• Phase 1 (Easy): Single line faults, static loads. 

• Phase 2 (Medium): N-2 and N-3 contingencies, fluctuating renewable inputs. 

• Phase 3 (Extreme): N-k contingencies (k > 5), communication packet loss, and sensor noise. 

With a gradual rise in the entropy of the training environment, the agents acquire a healthy 

generalised policy that views grid physics as general graph rules and not node-based patterns. 

3.6 Algorithmic Complexity and Scalability Analysis 

The computational complexity of the PowerGNN approach is used to analyse its theoretical 

efficiency: 

• Centralised MINLP: Typically NP-hard, 𝑂(2𝐿). 

• Standard MARL (MLP-based): 𝑂(𝑁2) due to fully connected input layers. 
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• Proposed PowerGNN: 𝑂(𝐿 · |𝐸|𝑎𝑣𝑔), where L is the number of GNN layers and |𝐸|𝑎𝑣𝑔is the 

average node degree. 

Since |𝐸|𝑎𝑣𝑔  for power grids is typically small (between 2 and 4), our approach demonstrates 

linear scalability 𝑂(𝑁). This mathematical property is what enables the “zero-shot” transferability 

across grids of different sizes, as the kernel of the GNN is shared across all nodes regardless of 

total system count. 

4. Experimental Results  

The evaluation of the PowerGNN framework is conducted through a multi-dimensional experimental 

suite designed to test the limits of decentralised intelligence in power system restoration. To provide a 

rigorous validation, our approach against three primary baselines is benchmarked: 

• Traditional Heuristic Restoration: A rule-based greedy approach commonly used in utility 

“black-start” manuals. 

• Centralised PPO (Proximal Policy Optimisation): A state-of-the-art centralised 

reinforcement learning agent with global visibility. 

• Standard MARL (Multi-Agent RL): A multi-agent system utilising standard multi-layer 

perceptron (MLPs) without graph-inductive bias. 

The following sections provide a granular analysis of the six experiments (A through F), 

correlating empirical data with the mathematical foundations laid out in the methodology. 

 

4.1 Experiment A: N-k Contingency and Disaster Recovery Performance 

The main goal of Experiment A is to assess the raw restoration capability of agents under different 

levels of physical destruction. The random removal of 𝑘 lines (where 𝑘 is from 3to 7 in the IEEE 

39-bus system) is our way of simulating the extreme and unpredictable natureof catastrophic 

infrastructure failure. 

4.1.1 Restoration Speed and Efficiency 

As shown in our reference results (Table 1), the PowerGNN achieved a mean restoration time 

of 88.3 seconds, compared to 210.5 seconds for the centralised PPO and over 450 seconds for 

heuristic methods. The superiority of the GNN-based method over other methods in this case 

is essentially due to the decentralised execution logic. In the heuristic and centralised models, 

each switching action needs to be checked against a global state, thus creating a sequential 

bottleneck. On the other hand, PowerGNN agents act in parallel. Since each agent has a local 

topological embedding ℎ𝑖 , several “islands” of restoration can begin at the same time in 

different sectors of the grid. This “divide and conquer” tactic makes the restoration curve 

much steeper, allowing critical loads to be re-energised 2.4x faster than the closest AI 

competitor. 

Table 1: Benchmarking Performance on IEEE 39-Bus System 

Metric Heuristic Centralised PPO PowerGNN 

Restoration Time (s) 471 210.5 88.3 

Voltage Violations High Low Zero 

Success Rate (N-3) 60.3% 82.4% 98.7% 
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Figure 1: Training convergence and initial restoration performance. 

 

4.1.2 Voltage Stability and Constraint Satisfaction 

A critical concern in rapid restoration is the risk of voltage instability. The data indicate that 

despite the speed of restoration, the PowerGNN maintained a near-perfect voltage profile; 

with zero violations of the 0.95–1.05 p.u. safety corridor across all test cases. This stability is 

attributed to the multi-objective reward function discussed in Section 3.4. By penalising the 

quadratic deviation from the reference voltage (|Vi| − 1.0)2, the agents learned to “throttle” 

their restoration speed when the local impedance indicated a potential voltage collapse. The 

GNN’s ability to aggregate neighbourhood admittance data (𝑌𝑖𝑗) allows the agent to anticipate 

the voltage drop associated with a new load pickup before the breaker is even closed. 

4.2 Experiment B: Resilience to Communication Silence 

In a disaster, communication is rarely “perfect.” Experiment B investigates the impact of packet 

loss on coordination. 

4.2.1 Graceful Degradation vs. Catastrophic Failure 

The results for Experiment B present one of the most compelling arguments for the GNN 

architecture. As packet loss increased to 30%, the standard MARL model’s success rate 

plummeted to 65%. In contrast, the PowerGNN maintained a restoration success rate of 

94.8%. 

The performance gap arises from the GNN’s latent topological memory. Because the agents 

use a GRU-based update function in their message-passing layers, they do not rely solely on 

the “instantaneous” packet from their neighbour. If a packet is lost at time t, the agent’s 

hidden state ℎ𝑖
(𝑡−1)

 still contains a high-fidelity representation of the neighbourhood’s 

previous state and topology. This creates a “temporal buffer” that allows the agent to continue 

executing safe restoration policy even during intermittent communication silence. 

4.3 Experiment C: Computational Scalability and the O(N) Advantage 

Experiment C evaluates the framework’s feasibility for real-world utility-scale deployment by 

testing it on systems ranging from 14 to 300 buses. 
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Figure 2: Impact of communication failure. 

 

Table 2: Resilience to Network Degradation 

Packet Loss (%) Std. MARL Success PowerGNN 

Success 

Performance Data 

0% (Ideal) 94.1% 98.7% +4.6% 

30% (Jitter) 65.0% 94.8% +29.8% 

50% (Critical) 30.1% 88.5% +58.4% 

 

Table 3: Multi-System Scalability Analysis 

System Size Centralized PPO 

Time 

PowerGNN 

Time 

Speedup Factor 

IEEE 14-bus 120 s 80 s 1.5× 

IEEE 39-bus 450 s 110 s 4.1× 

IEEE 118-bus 900 s 135 s 6.6× 

IEEE 300-bus >1800 s (Timeout) 150.2 s >12.2× 

 

4.3.1 Overcoming the Curse of Dimensionality 

The training time for centralised PPO grew in quadratic fashion (𝑂(𝑁2)), reaching a timeout 

of 1800+seconds per epoch on the IEEE 300-bus system. The PowerGNN, however, 

exhibited strictly linear scalability𝑂(𝑁), completing the same epoch in just 150.2 seconds. 

This linear complexity is the result of the localised receptive field. In the methodology, each 

agent only processes information from its k-hop neighbours. As the total number of buses N 

increases, the number of neighbours for any single agent remains constant (due to the sparse 

nature of power grids). Consequently, doubling the grid size only doubles the total number of 

local computations, whereas in a centralised model, it quadruples the size of the neural 

network’s input layer and the complexity of the weight matrices. 
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Figure 3: Computational scalability (log scale). 

4.4 Experiment D: Stochastic Renewable Integration 

As grids transition to greener energy, they become more volatile. Experiment D tested the agents’ 

ability to handle “noisy” generation inputs during a storm. 

4.4.1 Dynamic Compensation and Robustness 

Under high-volatility conditions (σ = 0.5), the model maintained a voltage stability index 

(VSI) of 0.972, significantly higher than the traditional droop control baseline of 0.885. 

The discussion here centers on the message passing mechanism. In a traditional droop control 

system, the regulator is purely reactive, meaning it only sees the local voltage drop. In the 

PowerGNN, the agent receives “messages” from neighbouring wind/solar buses. By 

observing the𝑃/𝑄 fluctuations of its neighbours through the graph convolution, the agent 

performs proactive compensation, adjusting its local reactive power injection before the 

instability propagates to its own bus. 

 
Figure 4: Voltage stability under renewable stochasticity. 
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Table 4: VSI under Wind/Solar Volatility 

Wind/Solar Volatility 

(σ) 

Droop Control (VSI) MARL-GNN 

(VSI) 

Improvement 

Low (Clear Sky) 0.982 0.991 +0.9% 

Medium (Overcast) 0.941 0.985 +4.6% 

High (Storm/Disaster) 0.885 (Unstable) 0.972 +9.8% 

 

4.5 Experiment E: Adversarial Resilience (Cyber-Security) 

Power systems are prime targets for cyber-attacks. Experiment E simulated false data injection 

(FDI) attacks, where 20% of the nodes were compromised to send misleading state data. 

4.5.1 Spatial Consensus as a Defense Mechanism 

Standard RL models failed catastrophically under FDI, with accuracy dropping to 35%. The 

GNN-MARL retained 89.2% accuracy. 

This resilience is explained by the spatial consensus property of graph attention networks 

(GAT). In a GNN, a node’s state is an aggregation of its neighbours. If one node (the attacker) 

reports an outlier value that is physically inconsistent with the admittance (𝑌𝑖𝑗 ) and the 

statesof the other neighbours, the GNN’s attention mechanism (𝛼𝑖𝑗) learns to de-weight that 

specificedge. The model effectively performs real-time anomaly detection as a by product of 

its architectural design, allowing the decentralised “collective” to override a malicious 

minority. 

 
Figure 5: Accuracy under false data injection attacks. 

Table 5: Cyber-Security Resilience under FDI Attacks 

Nodes Attacked Standard RL 

Accuracy 

MARL-GNN 

Accuracy 

Detection Rate 

5% 82.4% 97.1% 94.2% 

10% 61.2% 94.5% 91.5% 

20% 35% (Failure) 89.2% 85% 

 

4.6 Experiment F: Zero-Shot Transfer Learning 

The final experiment investigated whether a model trained on a small system (IEEE 39-bus) could 

be deployed on a large system (IEEE 118-bus) without re-training. 
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4.6.1 Theoretical Generalisation 

The centralised PPO failed completely (4.1% success), as its input layer was fixed to 39 

nodes. The PowerGNN achieved an 88.1% success rate on the unseen 118-bus system. 

 
Figure 6: Zero-shot transfer performance. 

 

Table 6: Zero-Shot Transfer Learning Performance 

Target Grid 

(Unseen) 

Centralised RL Success 

(%) 

MARL-GNN Success (%) Transfer Efficiency 

IEEE 39 (Trained) 98.2% 98.7% 100% 

IEEE 57 (Unseen) 12.5% (Fails) 92.4% 93.6% 

IEEE 118 (Unseen) 4.1% (Fails) 88.1% 89.2% 

 

The discussion for Experiment F is the most profound: it suggests that power restoration is a 

universal topological problem. Because the GNN learns “local rules” of electrical physics 

(e.g., “if voltage drops, close the nearest capacitor bank”), and these rules are the same in any 

grid, the model becomes grid-agnostic. This is the “plug-and-play” capability required for 

rapid emergency response, where a pre-trained “foundation model” for power grids could be 

deployed instantly on any city’s network. 

4.7 Summary of Findings and Synthesis 

The results of this study provide strong evidence for the transition from centralized, vector-based 

optimization to decentralized, graph-based intelligence. 

• Speed vs. Stability: Restoration speed does not have to come at the cost of voltage stability, 

provided the agents are spatially aware. 

• Scalability: The 𝑂(𝑁) complexity makes this framework a viable path for protectingmassive 

regional interconnects. 

• Security: The “collective intelligence” of MARL provides a natural layer of cyber-defense that is 

absent in centralized systems. 

In conclusion, the PowerGNN framework successfully navigates the high-dimensional, non-linear 

landscape of grid restoration. It transforms a vulnerable, centralized system into a resilient, self-

healing organism that can withstand the physical and digital chaos of the 21st-century disaster 

landscape. 
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5. Discussion 

5.1 Summary of Contributions 

The research presented in this paper addressed the fundamental limitations of centralised, 

optimisation-based power grid restoration in the face of catastrophic 𝑁 − 𝑘  contingencies and 

adversarial environments. By departing from the traditional “Global Observer” paradigm and 

embracing a decentralised Multi-Agent Reinforcement Learning (MARL) architecture, it is 

successfully demonstrated that grid resilience can be achieved through localised, graph-informed 

intelligence. 

The primary contribution of this work is the development of the PowerGNN layer, which embeds 

the physical laws of electrical networks into a latent spatial representation. This architecture 

proved inherently superior to standard neural networks by providing a Graph-Inductive Bias, 

allowing agents to maintain operational continuity even when the physical topology of the grid 

was severely altered. Our methodology bridged the gap between theoretical AI and power 

engineering by incorporating a multi-objective reward function that explicitly penalised voltage 

instability and excessive switching, ensuring that the autonomous policies remained within the 

bounds of engineering safety. 

5.2 Synthesis of Experimental Findings 

The empirical validation conducted across six comprehensive experiments (A–F) provided a 

robust proof of concept for the proposed framework. 

• Restoration Speed and Parallelism: In Experiment A, it was clear that decentralised agents 

were able to restore the IEEE 39-bus system a whopping 5 times faster as compared to the 

traditional heuristics. The finding serves as confirmation that parallelism enables the reduction of 

the socio-economic impact of blackouts to a very small level. By letting multiple “islands” of 

restoration appear spontaneously, the system liberates itself from the bottlenecks in the SCADA-

based control, which are inherently sequential. 

• Resilience to Network Degradation: Experiment B showed that the incorporation of Gated 

Recurrent Units (GRUs) in the GNN layers helped the agents to handle the situation of 

“communication silence.” The success rate of 94.8% at 30% packet loss indicates that the hidden 

topological memory of the GNN can be a very efficient way to take the place of live telemetry in 

the most turbulent ’dark sky’ phase of a disaster. 

• Computational Efficiency and Scalability: Maybe the single most substantial result was the 

linear O(N) scalability that was observed in Experiment C. It is demonstrated that the 

computational overhead of PowerGNN increases only with the number of nodes, not exponentially 

with the number of possible switching states. Hence, a feasible way for the safeguarding of big, 

interconnected regional grids has been delivered, which have been the conventional cases of ’too 

large to optimise in real-time, thus are now able to be optimised in real-time. 

• Cyber-Physical Robustness: The scenarios in Experiment D and E showed how the framework 

could effectively manage renewable stochasticity and FDI attacks, which, in turn, revealed a 

secondary advantage of graph-based MARL: Spatial Consensus. The attention mechanisms of the 

GNN inherently detect and isolate physical outliers, thus offering a built-in cybersecurity feature 

that is not dependent on externally mounted intrusion detection systems. 

• The Universality of Grid Physics: Success in Experiment F with “Zero-Shot” transfer learning 

indicates that the PowerGNN has developed a “universal” language for power restoration. The 
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performance of a model trained on a 39-bus system successfully managing 118-bus system without 

further training is a critical advancement toward developing Power Grid Operations Foundation 

Model. 

5.3 Theoretical Implications for Autonomous Infrastructure 

Due to the success of the PowerGNN framework for managing most critical infrastructures, this 

framework will fundamentally change the approach towards the management of our most 

important infrastructures. While the concept of automation was originally intended to replicate 

human decision-making at greater speeds, it has been discovered through our research that by 

utilising a decentralised and a genetic approach, there can be forms of restoration routes and 

stabilisation techniques that cannot be understood by human facility operators or traditional 

solvers. 

Rather than simply creating a resilient system by relocating intelligence to the “Edge” of the 

substations and DER Controllers, an Ant fragile system is being created by us. For example, in 

contrast to a centralised system that collapses when it comes under duress, the PowerGNN 

network uses its local connections to uncover new and innovative solutions as it is forced to 

navigate through the carnage created by a destroyed network. Also, the decentralisation of 

PowerGNN network supports the growing trend towards Microgrid systems and the proliferation 

of Distributed Energy Resources (DERs). 

5.4 Limitations and Challenges 

Despite the high performance recorded in this study, several challenges remain before this 

technology can be deployed in a live utility environment. 

• Transient Stability Verification: Our current reward function uses a steady-state approximation 

for voltage stability. In a real-world “dark start,” the transient electromagnetic effects of energising 

large transformers and motors can be violent. Future work must integrate full Electromagnetic 

Transient (EMT) simulations into the training loop, likely requiring more advanced high-

performance computing (HPC) environments. 

• Safety Guarantees and “Formal Verification”: AI models are often viewed as “black boxes” 

by power system engineers. For a utility to trust an autonomous agent withhigh-voltage breaker, 

Explainable AI (XAI) and formal verification techniques should be preferred that can 

mathematically guarantee the agent will never take an action that violates safety interlocks. 

• Heterogeneous Communication Protocols: While packet loss is simulated, real grids use a 

variety of legacy and modern protocols (DNP3, IEC 61850). Future iterations of the MARL 

framework must account for the heterogeneous nature of grid telemetry and the varying latencies 

across different hardware vendors. 

6. Conclusion and Future Work 

The horizon for this research is the development of a fully autonomous, self-healing grid. To achieve 

this vision, the first avenue to be considered for future exploration is Physics-Informed Neural 

Networks (PINNs), with the aim of incorporating the actual Power Flow Equations (AC-OPF) as a 

differentiable layer within the GNN. By enforcing the laws of physics (e.g., P = V I cos ϕ) directly 

within the neural architecture, the training time can be reduced, and the possibility of the agent 

proposing “physically impossible” solutions can be eliminated. The second avenue is Multi-Modal 

Sensing, which would enable GNN agents to incorporate information from satellite images, weather 

sensors, and even social media ‘noise’; they could then predict areas susceptible to maximum physical 

impact and reroute the network accordingly. The final avenue is Collaborative Human-Agent 
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Restoration, which advocates for the development of a “Human-In-The-Loop” hybrid system over a 

fully autonomous setting. The MARL-GNN will provide a human dispatcher with a list of the three 

best restoration paths, along with a confidence heat map for each restoration path, which would 

provide an opportunity to build confidence while benefiting from the O(N) speed of AI. 

 

PowerGNN is shifting away from the “fragile” nature of centralisation in the Power Grid of the 20th 

century to the vision of "resilient” decentralisation for the Power Grid of the 21st century. Grounded 

in the proof that GNNs possess the ability to learn the fundamental physics of electrical networks and 

coordinate the restoration of these complex networks simultaneously, this study provides a cost-

efficient, scalable way to safeguard our nation’s critical infrastructure. As an increasingly volatile 

climate is encountered, combined with the need to navigate a cyber security environment riddled with 

uncertainties, Decentralised Autonomous Restoration is no longer merely a topic of research; it has 

developed into a societal imperative. 
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