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ABSTRACT

The increasing amount of extreme weather conditions and the increasing complexity of cyber-
physical threats pose a significant threat to the resilience of modern power distribution systems. The
conventional approaches to restoration rely on centralised control and information flow across the
globe and therefore, are susceptible to failure at one point and delays in the event of a major disaster.
This paper presents a decentralised Multi-Agent Reinforcement Learning (MARL) algorithm with
Graph Neural Networks (GNNs) to restore the power grid in real time and independently. The
inductive bias of GNNs allows every substation agent to learn to jointly plan switching actions and
power dispatch depending on local topological characteristics and neighbour messages, eliminating
the need to have a central supervisor. The suggested framework is assessed using some IEEE standard
test systems under various load stressors, including N-k contingencies, blackouts in communication,
and adversarial False Data Injection (FDI) attacks. The methodology is aimed at creating a policy that
is agnostic to grids and puts forward the priority of restoring critical loads, but assuring voltage
stability by the use of localised spatial intelligence. This work shows the theoretical and practical
benefits of moving from complex centralised optimisation to a scalable, O(N) decentralised graph-
inference model. By demonstrating that learned policies can transfer across different topologies, this
research offers a strong foundation for the next generation of self-healing, “dark-start” resilient smart
grids that can effectively handle the challenging environment of post-disaster recovery.

Keywords: Multi-Agent Reinforcement Learning, Graph Neural Networks, Power System
Restoration, Decentralised Control, N-k Contingency, Cyber-Physical Security.

1. Introduction
1.1 The Criticality of Power System Resilience in the Modern Era
Global Power Grid is known to be the largest and most complex structure ever built by
humankind. It is an invisible pillar of modern society. It enables numerous activities such as
industrial production, health service provision, telecommunication, and water purification.
Unfortunately, this enormous structure is under increasing attack. Global Boiling has led to the
increased frequency and severity of extreme weather incidents such as hurricanes, wildfires, ice
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storms, and floods which destroy and disable the physical structures (transmission corridors) of
the infrastructure. Extreme weather also makes traditional protection plans useless.

At the same time, the move to a decentralized Smart Grid system increases the attack surface for
enemy cyber systems. A power outage is no longer an occasional nuisance. It is a threat.
Examples are the 2021 Texas power crisis and the ongoing blackouts in Ukraine. Grid breakdown
has profound socio-economic impacts and can lead to loss of life. Therefore, the postulate of the
utility operators has shifted from reliability of the grid to resilience, being the ability of the grid to
endure, adjust and quickly recover from drastic damage. It is to be noted that in this instance, the
restoration time and the level of automation employed to restore the system balance, are more
than just indicators of a technical aspect, but are, in fact, fundamental to the system.

1.2 The Traditional Restoration Paradigm: Strengths and Failures

In the last fifty years, the restoration of power systems has been treated as a centralised
optimisation problem. In dealing with a blackout situation, one can use Bottom-Up or Top-Down
approach. In a bottom-up restoration, or Black-Start, islands of power are formed around black-
start-eligible generators. These islands are expanded one at a time, synchronised, and merged into
a fully stable system.

Traditionally, these were controlled through Centralised Restoration Schemes (CRS). This was
formulated as a MINLP problem, where the objective was to restore the maximum possible load
given the power flow equations, voltage control, and transient stability, to be satisfied. CRS works
theoretically under, so to say, Blue Sky conditions (minor outages of predictable nature).
However, it is almost certain to fail under “Dark Sky” disasters. The system is severely
constrained through the following:

1. The Curse of Dimensionality: Given a grid comprised of N buses and L transmission
lines, the number of potential switching configurations is equal to 2-. When L increases tothe
order of thousands, finding a globally optimal solution by exhaustively searching this space in
real-time is computationally infeasible, and it takes about hours for the algorithm to converge,
while only seconds are available for the task.

2. Centralised Vulnerability: CRS needs a high-bandwidth communication link to and from
every remote terminal unit (RTU) in the control center and field. During a disaster, if the
central hub or the communication fibre is cut, the brain of the grid is effectively lobotomized,
and local substations lose control.

3. The Static Nature of Optimisation: Traditional MINLP solvers are considered “one-shot”
solutions. These solvers do not have the capability to learn from previous failures. In case a
restoration path is unsuccessful because of a secondary fault or unexpected impedance, the
solver has to go back to the beginning of the optimisation process, thereby losing invaluable
time.

1.3 The Rise of Artificial Intelligence and the Vector-Space Limitation

To lessen these disadvantages, scientists have turned their attention to Reinforcement Learning
(RL). Different from static optimisation, RL agents learn a Policy (m), a way of associating a state
with an action, by trial and error in a simulated environment. After training a policy, the decision
making process is almost instantaneous, as it requires only one “forward pass” through a neural
network. Nevertheless, the so called first-generation “Vector-based” RL (typically utilising
standard Multi-Layer Perceptron) has in general, not been able to make the bridge of transition
from academic research to the industry sector. The reason lies in the Lack of Inductive Bias. A
conventional neural network views a power grid as a simple vector of numbers. It does not have a
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clue that Bus A is physically connected to Bus B. If the topology changes (for instance, a line is
blown down by a storm), the vector representation changes entirely, and the RL agent gets
“confused.” Hence, it is obligatory to constantly retrain the system for each change in the grid
layout, which is quite a challenge for a highly dynamic and unpredictable system like a power
grid under stress.

1.4 The PowerGNN Framework: Spatial Intelligence and Decentralised Coordination

Our proposed approach, which is termed PowerGNN, fundamentally re-imagines the power grid
not as a static set of variables, but as a dynamic topological manifold. In this case, a model of a
Local Observer driven by Graph Neural Networks (GNNs) and Multi-Agent Reinforcement
Learning (MARL) is employed rather than a model of a Global Observer to achieve true
resilience. The major technical development is the Graph-Inductive Bias. Through a GNN, all the
agents i (a substation or DER) carry out a localised calculation that sums features x; of its
neighbours j € N (i) . The agent produces a latent topological embedding hi through
severalstages of graph convolutions. Such embedding provides the context of the bus into the
grid, enabling differentiation between sturdy mesh connections and fragile radial branches. This
space knowledge empowers the agent to make decisions that are physically informed, i.e. which
breakers to close, with the priority of paths providing the greatest stability and least loss.
Moreover, a Decentralised Coordination Protocol is used in our framework. Agents do not need to
be aware of the state of the overall grid; instead, they rely on a Message-Passing system to convey
their plans and local perceptions. A variant of Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) is applied, with the Critic being enhanced with the help of graph-attention. This
allows Agent A to understand the potential impact of Agent B’s actions on the shared voltage of
the corridor, facilitating a coordinated, multi-island restoration strategy without a central
supervisor.

1.5 Resilience through Consensus and Zero-Shot Generalisation

LT3

One of the major benefits of this architecture is that it is immune to disaster scenarios’ “chaos” in
an intrinsic manner. Since the policy is developed as a local function of the graph, the PowerGNN
considers the disappearance of communication links or the crushing of a part of the network
simply as “masked edges.” Thus, the power network becomes a kind of “self-healing” organism
in which islands of intelligence arise spontaneously.

In addition, the GNN architecture is akin to a natural “filter” against adversarial attacks, such as
False Data Injection (FDI). Through Spatial Consensus, if a malicious or faulty node sends an
unreasonable voltage value; its neighbours deduce the physical outlier through their own GNN
aggregations and thus isolate the noise to keep the system safe.

Lastly, the biggest challenge in Al for power systems that is being dealt with here is
Generalisation. It is shown that PowerGNN, after being trained on a standard IEEE test system,
can be used “Zero-Shot” on a different, bigger grid topology. The model attains a degree of
universality that has never been seen before in decentralised RL by understanding the underlying
physics of the graph rather than the node-specific parameters. This research confirms this strategy
through six comprehensive experiments, namely N-k contingencies, communication silence,
scalability, stochasticity, security, and transferability, which together constitute a strong
foundation for the future fully autonomous, self-healing grid.

2. Literature Review

The challenge of restoring power to a compromised grid has evolved from a deterministic
optimisation task into a complex, multi-agent coordination problem. This literature review traces the
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trajectory of restoration methodologies from classical mathematical programming to modern
decentralised reinforcement learning and graph-theoretic models.

2.1 Classical Restoration Frameworks and Their Limitations

The initial study in power system restoration was subject to the fact that the need to control the
process of Black-Start was imminent, i.e. to restore the grid to service with a state of complete
collapse with the help of non-synchronised generation units. The physical classification of power
system stability, so delicate in keeping the balance between voltage and frequency constant when
the big inductive loads are reconnected, started with the foundational work by Kunduret al.[1]
where the authors aimed to classify the stability in relation to the reconnection process during the
reconnection of the big loads. This was historically a Mixed-Integer Non-Linear Programming
(MINLP) problem, as surveyed by El-Amary and Wang [3].

Although these centralised optimisation schemes (CRS) are mathematically rigorous, they have
very high computational intricacy. According to Liu et al. [4], the number of possible optimal
switching sequences to use in an IEEE 118-bus system or 300-bus system increases
exponentially, i.e. O(2%) and real-time response is almost impossible in the case of cascading
failures.

Furthermore, Chen et al. [5] highlighted that modern grid resilience metrics must go beyond
simple “Reliability” to include “Adaptability,” a quality often lacking in static, one-shot
optimisation solvers that cannot learn from the stochastic nature of disaster-induced outages.

2.2 The Shift toward Data-Driven Resilience

The power grid received a new paradigm from Deep Reinforcement Learning (DRL), powered
largely by the success of Deep Q-Network (DQN)[6] and Deep Deterministic Policy
Gradient(DDPG) [7]. Unlike traditional solvers that require online training, DRL agents do not
need it as they learn a control policy offline through millions of simulations and thus can do
instantaneous inference in the real situation. Zhang et al. [10] surveyed the applications and
concluded that DRL is a perfect fit for highly dimensional and non-linear environments like the
smart grid.

Still, the most frequently cited problem of the DRL research is the issue of a “Black Box” that
the authors of standard DRL. Grid data that is processed by traditional reinforcement learning
structures, e.g., Proximal Policy Optimisation (PPO) [8], is regarded as a simple vector. In this
way, the location-based interrelations of the electrical networks are being reconstructed. Panteli
and Mancarella [2] argued that if a restoration plan is to be resilient, it must be a ‘spatially aware’
one - understanding that the impact of the fault is local, it goes with the transmission lines, and is
not a global, uniform variable.

2.3 Decentralisation and Multi-Agent Coordination

The centralised control model has become a major obstacle as the grid incorporates more
Distributed Energy Resources (DERs). Chen et al. [19] have shown that decentralised restoration
methods, in which local micro grids make switching decisions independently, are thus
considerably more powerful in scenarios of communication failures. Moving away from the
center towards the “Edge” of the grid means that Multi-Agent Reinforcement Learning (MARL)
is needed.

The pioneering work on MADDPG by Lowe et al. [9] was the first to put forward the idea of
centralised training with decentralised execution (CTDE), which is now considered the most
effective way multi-agent coordination can be achieved. Zhang et al. [16] were the first to go
beyond this, establishing that MARL can handle cooperative tasks agents sharing a common goal
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such as restoring a shared voltage corridor without a central supervisor. Jiang et al. [20] have
gone even further in this direction by using ideas from micro-grid formation to demonstrate that
frequency can be kept more stable by decentralised agents than by centralised controllers in
islanded modes.

2.4 The Emergence of Graph Neural Networks (GNNs)

One of the most important breakthroughs in grid Al over the last few years is the adoption of
Graph Neural Networks (GNNs). As the power grid is a physical graph, GNNs deliver an
“Inductive Bias” that is not present in standard neural networks. Graph Convolutional Networks
(GCNs) and Graph Attention Networks (GATs) were formally defined, respectively by Kipf and
Welling [11] and Veli“ckovi'c et al. [12]. This model enable “message-passing” between nodes,
which is similar to the way electricity flows through transmission lines.

In the power systems domain, Hamilton et al. [14] proposed the idea of inductive representation
learning, which is quite essential for managing N-k contingencies. The property of a GNN being
able to recalculate the grid manifold without a new training, if a line is removed, is called
Permutation Invariance. On the way to their goal, Biagioni et al. [17] and Yang et al. [18] have
been using GNNs in Optimal Power Flow (OPF) and service restoration scenarios, respectively.
Their findings demonstrate that GNN-based agents are able to achieve higher speed and accuracy
than vector-based agents when the grid topology changes.

2.5 Cyber-Physical Security and Adversarial Resilience

Considering that grid intelligence is moving towards the edge, the risk of cyber-attacks is getting
higher. Liu et al. [21] and Kosut et al. [23] have described the damaging potential of False Data
Injection (FDI) attacks in detail. In these attacks, a set of compromised sensors deceives the
control system to trigger a blackout. Yan et al. [24] have proposed supervised learning for FDI
detection; however, these techniques generally fail in the case of high-stress disaster scenarios
where the data is noisy.

The most recent research works show that the “Spatial Consensus” of GNNs provides a natural
defence. Zhou et al. [15] argued that GNNs gather features from the neighbourhood, hence
making them inherently immune to outliers. Suppose a node indicates a fraudulent voltage value;
the GNN’s attention mechanism derived from the study of Veli“ckovi'c [12] can reduce that
node’s influence. This research direction is a vital bridge between grid restoration and cyber-
resilience.

2.6 Scalability and Zero-Shot Generalisation

A chief difficulty faced by Al in power systems is the jump from small test beds (like the
IEEE14-bus) to large-scale utility grids. Two papers by Zimmerman et al. [25] and Thurner et al.
[26] yielded the open-source tools (MATPOWER and ‘pandapower’) that have permitted the
simulation of vast networks. Centralised RL models, however, are still unable to scale to more
than a few hundred nodes.

Wang and Moore [28] have recently proposed a scalable GNN method for state estimation,
demonstrating that GNNs have O(N) complexity. Their finding is in line with the work of Gilmer
et al. [13] on message-passing neural networks, which maintained that localised graph operations
are the only way to get “Generalisation”. The ultimate objective, according to the ideas of
Blaabjerg et al. [29] and Justo et al. [30], is a “Universal Control Policy” capable of being trained
on synthetic grids and subsequently being used on any real-world topology; a PowerGNN
framework current research is progressing towards.

2.7 Identifying the Research Gap

elSSN : 3107-8540 40 RACE



Pradhan et al.

While the different parts of decentralised MARL and GNNs have been separately investigated,
there is an essential point that is missing: the combination of these technologies into one single
framework for (N — k) disaster restoration has not been figured out yet. Most of the current
works only focus on either small scale micro-grid formation or steady state optimisation under
perfect communication.

Research is scarce on modelling physical destruction (N — k), communication silence, and
adversarial FDI attacks happening simultaneously in a single autonomous model. Besides that,
the “Zero-Shot” transferability of restoration policies to radically different IEEE test systems is
still mostly unverified. Our project, PowerGNN, is intended to become a resource that offers a
scalable, resilient, and grid-agnostic solution for future autonomous power systems, thus filling
the gap.

3. Methodology

The structural integrity of the proposed restoration framework rests upon the synergy between graph
topology and sequential decision making. Unlike traditional optimisation, our method does not seek a
static solution but learns a dynamic control policy.

3.1 Graph-Theoretic Mapping of Electrical Physics

The power system is defined as a directed, attributed graph G = (V, E). In this formulation,
the physical constraints of the grid are embedded directly into the graph structure.

3.1.1 Node Attribute Engineering

Here, every busi € V is symbolised by an attribute vector xl.(t) € R?. In the case of the
restoration task, this vector is extended with both temporal and categorical predictors:

xi(t) = [IVil,8:, Py, Qgir Pai»Qair Sir Ti |- (1)
Where:
* [V;], 8;: The complex voltage state.
* P, Q: Active and reactive power flow balances.
* S;€ {0, 1}: Connectivity status (1 if connected to a “live” slack bus, 0 if is landed).
* 1;: Time since outage, used to model cold-load pickup (CLPU) effects.
* C;: A priority categorical variable (Critical, Industrial, Residential).
3.1.2 Edge Admittance and Topology Dynamics

The edges (i,j) € E represent transmission lines, transformers, and circuit breakers. Each
edgecarries an attribute vector e;; containing the complex admittance Y;; = G;; + jB;jand
thecurrent switch status u;; € {0, 1}.

In an N — k contingency, the graph is pruned: G ~ = (V,E \ Efquie)- The methodology must
remain invariant to these structural subtractions, a property inherently satisfied by the GNN’s
neighbourhood aggregation.

3.2 Decentralised Partially Observable Markov Decision Process (Dec-POMDP)

Grid restoration is a sequential problem in which action on time t will influence stability on
time (t + 1). This is formalised as a Dec-POMDP defined by the tuple (I, S, 4, P, R, 2,0, y).

3.2.1 Receptive Fields and Local Observations
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In a decentralised setting, agent i does not have access to the global state S. Instead, it
operates on a local observation o;. The k-hop receptive field is defined as:

NG) = {j € V: dist(i,j) < k}©2)

By restricting the observation to a k-hop neighbourhood, it is ensured that the computational
complexity for each agent remains constant penalising. Hence, the number of buses in the
grid, whether they are 39 or 30,000, will not affect the complexity. This is the fundamental
principle of our O(N) scalability.

3.2.2 Action Mapping for Restoration
The action space Ai is a hybrid of discrete and continuous variables:

* Topological Action (u;;): Determining which breakers to toggle to form new energised
paths.

* Resource Action (AP, ;): Adjusting the ramp rates of local generators to prevent frequency
collapse when a large cold-load pickup is energised.

* Voltage Regulation (Qg;): Injecting reactive power to support the voltage profile ofthe
newly formed island.

3.3 The PowerGNN Neural Architecture

The central technical contribution of this work is the PowerGNN layer. Unlike standard
Convolutional Neural Networks (CNNs) that operate on grids or MLPs that operate on vectors,
the PowerGNN operates on the sparse admittance manifold.

3.3.1 Message Passing and Aggregation Logic

Each agent performs a message-passing operation at every layer 1. The hidden

representationh?) is updated via:

1+1 l l
m®* = Z MLPy g (h, 0, 1))
€N G

hlgz+1) _ GRU(h@,mel))

4

Here, MLP,,,, learns to approximate the impact of line impedances on voltage drops. Byusing
agated recurrent unit (GRU) as the update function, the model maintains a memory ofthe
restoration sequence, preventing oscillatory switching actions.

3.3.2 Graph Attention Mechanism (GAT)

To handle the varying importance of different neighbours (e.g., a line connected to a massive
generator is more critical than a line to a small load), the multi-head attention is implemented
as:

_ exp(LeakyReLU(a" [Wh; || Wh; 1))
U7 Then v exp(LeakyReLU(@ Wh; || Wh; 1))

This attention coefficient a;; effectively acts as a dynamic weight for each edge, allowing
theagent to focus its computational resources on the most critical power flow corridors.

3.4 Multi-Agent Optimisation: Reward Engineering
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Training a MARL system for power grids requires a reward function that acts as a “differentiable
power flow engine.”

3.4.1 Component Breakdown

The scalar reward r; is computed as:

Z P, restored _
Z I total

Load weighting: Assignment of priority coefficients to buses based on their critical nature
(e.g., hospitals x10, residential x1). Soft constraints: Instead of hard-failing an episode when
voltage exceeds 1.05 p.u., a smooth quadratic penalty is applied. This provides the gradient

re = 0y Wy ) (IVil = 1.0)* =05 Nyicen

information necessary for the RL agent to learn the boundary of the safe operating region.
3.4.2 Addressing Non-Stationarity

In MARL, the environment is non-stationary because every agent is learning simultaneously.
Agent A’s optimal policy depends on agent B’s current policy. To solve this, centralized
training with decentralized execution (CTDE) is utilised. During the training phase, the critic
network has access to the global state and the actions of all agents (s,ay,...,a,). During
execution (disaster response), only the actor (the PowerGNN) is used, relying solely on local
graph observations.

3.5 The Simulation-to-Reality (Sim2Real) Pipeline
A critical aspect of our methodology is the integration with the ‘pandapower’ engine.
3.5.1 Power Flow in the Loop

At every RL step, the chosen actions are sent to a Newton-Raphson power flow solver. Action
validation: If an agent attempts to close a switch that would create a short circuit or an
unsynchronised connection, the environment overrides the action and applies a large negative
penalty. Transient approximation: While full electromagnetic transient (EMT) simulation is

too slow for RL training, the transient stability is approximated by monitoring the % and i—{
(ROCOF) values during the islanding phase.

3.5.2 Stochastic Curriculum Learning

To ensure the agents do not just memorise the IEEE 39-bus topology, a stochastic curriculum
is implemented:

* Phase 1 (Easy): Single line faults, static loads.
* Phase 2 (Medium): N-2 and N-3 contingencies, fluctuating renewable inputs.
* Phase 3 (Extreme): N-k contingencies (k > 5), communication packet loss, and sensor noise.

With a gradual rise in the entropy of the training environment, the agents acquire a healthy
generalised policy that views grid physics as general graph rules and not node-based patterns.

3.6 Algorithmic Complexity and Scalability Analysis

The computational complexity of the PowerGNN approach is used to analyse its theoretical
efficiency:

« Centralised MINLP: Typically NP-hard, 0(2L).
« Standard MARL (MLP-based): O(N?) due to fully connected input layers.
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* Proposed PowerGNN: O(L - |E|qy4), where L is the number of GNN layers and |E|qyg4is the
average node degree.

Since |E |44 for power grids is typically small (between 2 and 4), our approach demonstrates
linear scalability O(N). This mathematical property is what enables the “zero-shot” transferability
across grids of different sizes, as the kernel of the GNN is shared across all nodes regardless of
total system count.

4. Experimental Results

The evaluation of the PowerGNN framework is conducted through a multi-dimensional experimental
suite designed to test the limits of decentralised intelligence in power system restoration. To provide a
rigorous validation, our approach against three primary baselines is benchmarked:
* Traditional Heuristic Restoration: A rule-based greedy approach commonly used in utility
“black-start” manuals.
* Centralised PPO (Proximal Policy Optimisation): A state-of-the-art centralised
reinforcement learning agent with global visibility.
» Standard MARL (Multi-Agent RL): A multi-agent system utilising standard multi-layer
perceptron (MLPs) without graph-inductive bias.
The following sections provide a granular analysis of the six experiments (A through F),
correlating empirical data with the mathematical foundations laid out in the methodology.

4.1 Experiment A: N-k Contingency and Disaster Recovery Performance

The main goal of Experiment A is to assess the raw restoration capability of agents under different
levels of physical destruction. The random removal of k lines (where k is from 3to 7 in the IEEE
39-bus system) is our way of simulating the extreme and unpredictable natureof catastrophic
infrastructure failure.

4.1.1 Restoration Speed and Efficiency

As shown in our reference results (Table 1), the PowerGNN achieved a mean restoration time
of 88.3 seconds, compared to 210.5 seconds for the centralised PPO and over 450 seconds for
heuristic methods. The superiority of the GNN-based method over other methods in this case
is essentially due to the decentralised execution logic. In the heuristic and centralised models,
each switching action needs to be checked against a global state, thus creating a sequential
bottleneck. On the other hand, PowerGNN agents act in parallel. Since each agent has a local
topological embedding h;, several “islands” of restoration can begin at the same time in
different sectors of the grid. This “divide and conquer” tactic makes the restoration curve
much steeper, allowing critical loads to be re-energised 2.4x faster than the closest Al

competitor.
Table 1: Benchmarking Performance on IEEE 39-Bus System
Metric Heuristic Centralised PPO PowerGNN
Restoration Time (s) 471 210.5 88.3
Voltage Violations High Low Zero
Success Rate (N-3) 60.3% 82.4% 98.7%
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Figure 1: Training convergence and initial restoration performance.

4.1.2 Voltage Stability and Constraint Satisfaction

A critical concern in rapid restoration is the risk of voltage instability. The data indicate that
despite the speed of restoration, the PowerGNN maintained a near-perfect voltage profile;
with zero violations of the 0.95—1.05 p.u. safety corridor across all test cases. This stability is
attributed to the multi-objective reward function discussed in Section 3.4. By penalising the
quadratic deviation from the reference voltage (|Vi| — 1.0)2, the agents learned to “throttle”
their restoration speed when the local impedance indicated a potential voltage collapse. The
GNN’s ability to aggregate neighbourhood admittance data (Y;;) allows the agent to anticipate

the voltage drop associated with a new load pickup before the breaker is even closed.
4.2 Experiment B: Resilience to Communication Silence

In a disaster, communication is rarely “perfect.” Experiment B investigates the impact of packet
loss on coordination.

4.2.1 Graceful Degradation vs. Catastrophic Failure

The results for Experiment B present one of the most compelling arguments for the GNN
architecture. As packet loss increased to 30%, the standard MARL model’s success rate
plummeted to 65%. In contrast, the PowerGNN maintained a restoration success rate of
94.8%.

The performance gap arises from the GNN’s latent topological memory. Because the agents
use a GRU-based update function in their message-passing layers, they do not rely solely on
the “instantaneous” packet from their neighbour. If a packet is lost at time t, the agent’s

hidden state hgt_ D still contains a high-fidelity representation of the neighbourhood’s
previous state and topology. This creates a “temporal buffer” that allows the agent to continue
executing safe restoration policy even during intermittent communication silence.

4.3 Experiment C: Computational Scalability and the O(N) Advantage

Experiment C evaluates the framework’s feasibility for real-world utility-scale deployment by
testing it on systems ranging from 14 to 300 buses.
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Exp B: Impact of Comm. Failure
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Figure 2: Impact of communication failure.

Table 2: Resilience to Network Degradation

Packet Loss (%) | Std. MARL Success PowerGNN Performance Data
Success
0% (Ideal) 94.1% 98.7% +4.6%
30% (Jitter) 65.0% 94.8% +29.8%
50% (Critical) 30.1% 88.5% +58.4%

Table 3: Multi-System Scalability Analysis

System Size Centralized PPO PowerGNN Speedup Factor
Time Time
IEEE 14-bus 120 s 80 s 1.5x
IEEE 39-bus 450's 110s 4.1x%
IEEE 118-bus 900 s 135s 6.6x
IEEE 300-bus >1800 s (Timeout) 150.2 s >12.2x

4.3.1 Overcoming the Curse of Dimensionality

The training time for centralised PPO grew in quadratic fashion (O(N?)), reaching a timeout
of 1800+seconds per epoch on the IEEE 300-bus system. The PowerGNN, however,
exhibited strictly linear scalabilityO(N), completing the same epoch in just 150.2 seconds.
This linear complexity is the result of the localised receptive field. In the methodology, each
agent only processes information from its k-hop neighbours. As the total number of buses N
increases, the number of neighbours for any single agent remains constant (due to the sparse
nature of power grids). Consequently, doubling the grid size only doubles the total number of
local computations, whereas in a centralised model, it quadruples the size of the neural
network’s input layer and the complexity of the weight matrices.
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Exp C: Computational Scalability
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Figure 3: Computational scalability (log scale).
4.4 Experiment D: Stochastic Renewable Integration
As grids transition to greener energy, they become more volatile. Experiment D tested the agents’
ability to handle “noisy” generation inputs during a storm.
4.4.1 Dynamic Compensation and Robustness
Under high-volatility conditions (¢ = 0.5), the model maintained a voltage stability index
(VSI) of 0.972, significantly higher than the traditional droop control baseline of 0.885.
The discussion here centers on the message passing mechanism. In a traditional droop control
system, the regulator is purely reactive, meaning it only sees the local voltage drop. In the
PowerGNN, the agent receives “messages” from neighbouring wind/solar buses. By
observing theP/Q fluctuations of its neighbours through the graph convolution, the agent
performs proactive compensation, adjusting its local reactive power injection before the
instability propagates to its own bus.

Exp D: Voltage Stability vs. Volatility
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Figure 4: Voltage stability under renewable stochasticity.
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Table 4: VSI under Wind/Solar Volatility

Wind/Solar Volatility | Droop Control (VSI) MARL-GNN Improvement
(o) (VSI)

Low (Clear Sky) 0.982 0.991 +0.9%

Medium (Overcast) 0.941 0.985 +4.6%

High (Storm/Disaster) 0.885 (Unstable) 0.972 +9.8%

4.5 Experiment E: Adversarial Resilience (Cyber-Security)

Power systems are prime targets for cyber-attacks. Experiment E simulated false data injection

(FDI) attacks, where 20% of the nodes were compromised to send misleading state data.
4.5.1 Spatial Consensus as a Defense Mechanism
Standard RL models failed catastrophically under FDI, with accuracy dropping to 35%. The
GNN-MARL retained 89.2% accuracy.
This resilience is explained by the spatial consensus property of graph attention networks
(GAT). In a GNN, a node’s state is an aggregation of its neighbours. If one node (the attacker)
reports an outlier value that is physically inconsistent with the admittance (V;;) and the
statesof the other neighbours, the GNN’s attention mechanism («;;) learns to de-weight that
specificedge. The model effectively performs real-time anomaly detection as a by product of
its architectural design, allowing the decentralised “collective” to override a malicious

minority.
Exp E: Accuracy under Cyber-Attack
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Figure 5: Accuracy under false data injection attacks.
Table 5: Cyber-Security Resilience under FDI Attacks
Nodes Attacked Standard RL MARL-GNN Detection Rate
Accuracy Accuracy
5% 82.4% 97.1% 94.2%
10% 61.2% 94.5% 91.5%
20% 35% (Failure) 89.2% 85%

4.6 Experiment F: Zero-Shot Transfer Learning

The final experiment investigated whether a model trained on a small system (IEEE 39-bus) could
be deployed on a large system (IEEE 118-bus) without re-training.

elSSN : 3107-8540 48 RACE



Pradhan et al.

4.6.1 Theoretical Generalisation

The centralised PPO failed completely (4.1% success), as its input layer was fixed to 39
nodes. The PowerGNN achieved an 88.1% success rate on the unseen 118-bus system.

Exp F: Zero-Shot Transfer Success
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Figure 6: Zero-shot transfer performance.

Table 6: Zero-Shot Transfer Learning Performance

Target Grid Centralised RL Success | MARL-GNN Success (%) | Transfer Efficiency
(Unseen) (%)
IEEE 39 (Trained) 98.2% 98.7% 100%
IEEE 57 (Unseen) 12.5% (Fails) 92.4% 93.6%
IEEE 118 (Unseen) 4.1% (Fails) 88.1% 89.2%

The discussion for Experiment F is the most profound: it suggests that power restoration is a
universal topological problem. Because the GNN learns “local rules” of electrical physics
(e.g., “if voltage drops, close the nearest capacitor bank”), and these rules are the same in any
grid, the model becomes grid-agnostic. This is the “plug-and-play” capability required for
rapid emergency response, where a pre-trained “foundation model” for power grids could be
deployed instantly on any city’s network.

4.7 Summary of Findings and Synthesis

The results of this study provide strong evidence for the transition from centralized, vector-based

optimization to decentralized, graph-based intelligence.

* Speed vs. Stability: Restoration speed does not have to come at the cost of voltage stability,

provided the agents are spatially aware.

* Scalability: The O(N) complexity makes this framework a viable path for protectingmassive

regional interconnects.

* Security: The “collective intelligence” of MARL provides a natural layer of cyber-defense that is

absent in centralized systems.

In conclusion, the PowerGNN framework successfully navigates the high-dimensional, non-linear

landscape of grid restoration. It transforms a vulnerable, centralized system into a resilient, self-

healing organism that can withstand the physical and digital chaos of the 21st-century disaster

landscape.
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5. Discussion
5.1 Summary of Contributions

The research presented in this paper addressed the fundamental limitations of centralised,
optimisation-based power grid restoration in the face of catastrophic N — k contingencies and
adversarial environments. By departing from the traditional “Global Observer” paradigm and
embracing a decentralised Multi-Agent Reinforcement Learning (MARL) architecture, it is
successfully demonstrated that grid resilience can be achieved through localised, graph-informed
intelligence.

The primary contribution of this work is the development of the PowerGNN layer, which embeds
the physical laws of electrical networks into a latent spatial representation. This architecture
proved inherently superior to standard neural networks by providing a Graph-Inductive Bias,
allowing agents to maintain operational continuity even when the physical topology of the grid
was severely altered. Our methodology bridged the gap between theoretical Al and power
engineering by incorporating a multi-objective reward function that explicitly penalised voltage
instability and excessive switching, ensuring that the autonomous policies remained within the
bounds of engineering safety.

5.2 Synthesis of Experimental Findings

The empirical validation conducted across six comprehensive experiments (A—F) provided a
robust proof of concept for the proposed framework.

* Restoration Speed and Parallelism: In Experiment A, it was clear that decentralised agents
were able to restore the IEEE 39-bus system a whopping 5 times faster as compared to the
traditional heuristics. The finding serves as confirmation that parallelism enables the reduction of
the socio-economic impact of blackouts to a very small level. By letting multiple “islands” of
restoration appear spontaneously, the system liberates itself from the bottlenecks in the SCADA-
based control, which are inherently sequential.

* Resilience to Network Degradation: Experiment B showed that the incorporation of Gated
Recurrent Units (GRUs) in the GNN layers helped the agents to handle the situation of
“communication silence.” The success rate of 94.8% at 30% packet loss indicates that the hidden
topological memory of the GNN can be a very efficient way to take the place of live telemetry in
the most turbulent *dark sky’ phase of a disaster.

* Computational Efficiency and Scalability: Maybe the single most substantial result was the
linear O(N) scalability that was observed in Experiment C. It is demonstrated that the
computational overhead of PowerGNN increases only with the number of nodes, not exponentially
with the number of possible switching states. Hence, a feasible way for the safeguarding of big,
interconnected regional grids has been delivered, which have been the conventional cases of ’too
large to optimise in real-time, thus are now able to be optimised in real-time.

* Cyber-Physical Robustness: The scenarios in Experiment D and E showed how the framework
could effectively manage renewable stochasticity and FDI attacks, which, in turn, revealed a
secondary advantage of graph-based MARL: Spatial Consensus. The attention mechanisms of the
GNN inherently detect and isolate physical outliers, thus offering a built-in cybersecurity feature
that is not dependent on externally mounted intrusion detection systems.

* The Universality of Grid Physics: Success in Experiment F with “Zero-Shot” transfer learning
indicates that the PowerGNN has developed a “universal” language for power restoration. The
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performance of a model trained on a 39-bus system successfully managing 118-bus system without
further training is a critical advancement toward developing Power Grid Operations Foundation
Model.

5.3 Theoretical Implications for Autonomous Infrastructure

Due to the success of the PowerGNN framework for managing most critical infrastructures, this
framework will fundamentally change the approach towards the management of our most
important infrastructures. While the concept of automation was originally intended to replicate
human decision-making at greater speeds, it has been discovered through our research that by
utilising a decentralised and a genetic approach, there can be forms of restoration routes and
stabilisation techniques that cannot be understood by human facility operators or traditional
solvers.

Rather than simply creating a resilient system by relocating intelligence to the “Edge” of the
substations and DER Controllers, an Ant fragile system is being created by us. For example, in
contrast to a centralised system that collapses when it comes under duress, the PowerGNN
network uses its local connections to uncover new and innovative solutions as it is forced to
navigate through the carnage created by a destroyed network. Also, the decentralisation of
PowerGNN network supports the growing trend towards Microgrid systems and the proliferation
of Distributed Energy Resources (DERSs).

5.4 Limitations and Challenges

Despite the high performance recorded in this study, several challenges remain before this
technology can be deployed in a live utility environment.

* Transient Stability Verification: Our current reward function uses a steady-state approximation
for voltage stability. In a real-world “dark start,” the transient electromagnetic effects of energising
large transformers and motors can be violent. Future work must integrate full Electromagnetic
Transient (EMT) simulations into the training loop, likely requiring more advanced high-
performance computing (HPC) environments.

» Safety Guarantees and “Formal Verification”: Al models are often viewed as “black boxes”
by power system engineers. For a utility to trust an autonomous agent withhigh-voltage breaker,
Explainable Al (XAI) and formal verification techniques should be preferred that can
mathematically guarantee the agent will never take an action that violates safety interlocks.

* Heterogeneous Communication Protocols: While packet loss is simulated, real grids use a
variety of legacy and modern protocols (DNP3, IEC 61850). Future iterations of the MARL
framework must account for the heterogeneous nature of grid telemetry and the varying latencies
across different hardware vendors.

6. Conclusion and Future Work

The horizon for this research is the development of a fully autonomous, self-healing grid. To achieve
this vision, the first avenue to be considered for future exploration is Physics-Informed Neural
Networks (PINNs), with the aim of incorporating the actual Power Flow Equations (AC-OPF) as a
differentiable layer within the GNN. By enforcing the laws of physics (e.g., P = V I cos ¢) directly
within the neural architecture, the training time can be reduced, and the possibility of the agent
proposing “physically impossible” solutions can be eliminated. The second avenue is Multi-Modal
Sensing, which would enable GNN agents to incorporate information from satellite images, weather
sensors, and even social media ‘noise’; they could then predict areas susceptible to maximum physical
impact and reroute the network accordingly. The final avenue is Collaborative Human-Agent
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Restoration, which advocates for the development of a “Human-In-The-Loop” hybrid system over a
fully autonomous setting. The MARL-GNN will provide a human dispatcher with a list of the three
best restoration paths, along with a confidence heat map for each restoration path, which would
provide an opportunity to build confidence while benefiting from the O(N) speed of AL

PowerGNN is shifting away from the “fragile” nature of centralisation in the Power Grid of the 20th
century to the vision of "resilient” decentralisation for the Power Grid of the 21st century. Grounded
in the proof that GNNs possess the ability to learn the fundamental physics of electrical networks and
coordinate the restoration of these complex networks simultaneously, this study provides a cost-
efficient, scalable way to safeguard our nation’s critical infrastructure. As an increasingly volatile
climate is encountered, combined with the need to navigate a cyber security environment riddled with
uncertainties, Decentralised Autonomous Restoration is no longer merely a topic of research; it has
developed into a societal imperative.
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