
Revolutionary Advances in Computing and Electronics (RACE): An International Journal

Volume 01, Issue 02, pp.26-35, Oct-Dec 2025

ISSN (Online): 3107-8540

*Corresponding author: Anuradha Dahiya, Department of CSE, Deenbandhu Chhotu Ram University of Science and Technology, Murthal,

India. (anudahiya3973@gmail.com)

eISSN : 3107-8540 26 RACE

Received: 17/12/2025, Accepted: 31/12/2025

Risk-Oriented Taxonomy of Android App Assessment Models

Anuradha Dahiya1, Sukhdip Singh2, Gulshan Shrivastava3

1,2Department of CSE, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India

3School of Computer Science Engineering and Technology, Bennett University, Greater Noida, UP, India

anudahiya3973@gmail.com, sukhdeepsingh.cse@dcrustm.org, gulshanstv@gmail.com

ABSTRACT

Android application security research has been dominated by the malware-detection paradigm, in which

either benign or malicious labels are assigned to applications. Although effective in terms of large-scale

screening, this binary perspective is not effective to capture the diverse risks brought about by modern

Android applications, such as privacy leakage, financial abuse, intrusive tracking, and misuse of system

resources. This work provides a structured review of the research efforts on Android app assessment

models from a risk-oriented perspective. Rather than proposing new techniques for detection, this

review synthesizes the existing literature and organizes prior work through a multi-dimensional

taxonomy with respect to risk modelling granularity, risk semantics, evidence sources, learning

paradigms, and interpretability. This paper reveals important trends, constraints, and unresolved issues

by analysing how current approaches conceptualise and depict risk. The purpose of the article is to

outline the shift from malware detection to thorough application risk assessment and to provide a

comprehensive reference for future Android security research.

 Keywords: Android security, Malicious activities, User privacy, Application Trust & Risk, Application metadata,

Risk assessment.

1. Introduction

Due to Android's widespread use, a vast ecosystem of apps has appeared from entities with diverse

security policies and motivations. The diverse apps reached users through the official Play Store and

third-party app stores. Security experts have noted that with diversity, the different versions of malicious

programs have increased continuously, and new families of malware are occurring at an alarming rate

[1]. The previous malware basically concentrated on premium SMS fraud and basic identity theft, but

today's threat environment has enhanced. Today's threat strategy includes ransomware, highly targeted

spyware, banking trojans, cryptocurrency miners. Detection is avoided by evasion tactics that adapt to

timing triggers or device conditions. An enhanced detection challenge is presented by dynamic code

loading, code obfuscation, encryption of malicious payloads, and polymorphic behaviour

[2]. Especially the proliferation of "logic bombs" threats, which do not trigger during security

evaluations but start maliciously working when certain conditions are met in real-world circumstances,

has raised security concerns.

Another obstacle is threats that can misuse legitimate platform functions as weaponry to commit

malicious conduct. The best example of this is an overlay attack, which can exploit the platform's screen

rendering feature to create phishing pages that steal user credentials. These types of attacks mainly

exploit authorised system functionalities and make themselves harder to detect [3]. Moreover,

Dahiya et al.

eISSN : 3107-8540 27 RACE

increasing use of mobile apps, IoT devices, cloud services, and enterprise services enhanced the

complexity of threat identification by progressively increasing the threats. Figure 1 highlights some

devices from a wide range of devices powered by the Android platform, such as mobile phones,

wearables, tablets, ATMs, GPS devices and other smart devices. The deployment of Android across

heterogeneous devices increases the surface area for attackers, enabling propagation of security threats

introduced by mobile applications across multiple endpoints. Malicious activities can likely affect the

privacy of the country and its users, organisational infrastructure, and various imperative domains such

as the healthcare, education, and finance sectors.

 Figure 1: Some Android-powered devices

The famous malware incidents, such as FluBot, Xenomorph, and Joker, demonstrate how malware can

access official app stores by evading detection mechanisms and cause significant security

harm. Several methods based on static and dynamic analysis and machine learning have been proposed

to analyse Android applications for protection [4]. Most of these works have been framed as malware

detection mechanisms, with the primary objective of distinguishing malicious applications from benign

ones. This work analysed existing Android app assessment research from a risk-oriented perspective

and reached a determination. The primary objective is to structure the risk assessment field, highlight

its limitations, and foster a clearer understanding of how risk is currently assessed in Android

applications.

2. Background

In risk analysis, different types of weaknesses are identified, such as permission misuse in the app,

misuse of legitimate platform APIs in the app, and privacy leakage in the app. From the perspective of

risk assessment, Table 1 lists the primary threats to the Android platform, their corresponding

mechanisms, the significant risk impact, and the entities that are impacted. The information

Applications use rather than their initial intention raises privacy concerns. Financial losses are mostly

caused by illegal transactions, stolen banking credentials, and the misuse of premium SMS services.

Phishing overlays and forged calls are pointing to user interface risks. Misuse of accessibility services,

abuse of background execution permissions, and abuse of inter-component communication are

examples of platform dangers.

Android apps can act as gateways for lateral movement and even for the integration of compromised

cloud services, posing organisational hazards in the corporate world. Risk-oriented techniques usually

produce a risk score, rating, or category that represents the likelihood and severity of potential harm

rather than a single output, such as a yes or no verdict. In situations where prioritisation and contextual

decision-making are necessary, such as app marketplace screening, enterprise mobile management, and

regulatory compliance, this distinction is very crucial. This work thus focuses on risk assessment models

Dahiya et al.

eISSN : 3107-8540 28 RACE

for Android apps that have been proposed in the literature utilising classical machine learning, deep

learning, and rule-based risk modelling strategies in addition to static, dynamic, and hybrid analysis

techniques.

 Table 1: Risk-Oriented Taxonomy of Android Apps Threats

Threat Type Common Mechanisms Impact Affected Entities

Financial fraud Premium services abuse, billing

API exploitation

Monetary loss Users, banks

Privacy abuse Sensor misuse, background

tracking

Sensitive data

leakage

End users and

platform providers

User interface

deception

Overlay attacks, phishing

interfaces, fraudulent login

screens, clickjacking

Credential

compromise

End users

Platform

capability abuse

Misuse of accessibility services,

privilege escalation mechanisms

System integrity

compromise

Device ecosystem

Enterprise-

oriented threats

Credential harvesting and reuse,

unauthorized service access

Network and

organizational breach

Enterprises

Resource abuse Cryptomining, excessive

background execution

Device degradation

and energy drain

End users

Communication

abuse

Covert network channels, data

exfiltration over encrypted traffic

Information leakage

and control loss

Users,

organizations

3. Analysis Mechanisms for Android App Risk Assessment

The main analysis techniques used in current Android app risk assessment models are examined in this

section. Static, dynamic, and hybrid approaches can be used to broadly classify malicious activities,

each of which provides varying degrees of insight into application behaviour and related risk factors.

Further analysis approaches considered miscellaneous perspectives for protection.

3.1 Static Analysis-Based Risk Assessment

Static analysis is the most commonly used analysis approach, evaluating apps without executing them

and conducting app package, manifest, and source- or bytecode-level reviews to identify issues. Static

analysis is used to infer an app’s capabilities and intent, which can indicate potential risk even in the

absence of observed malicious behaviour that can be identified by running the app. The most popular

features of an app that can be identified in static analysis are static app permissions, declared

components, intent filters, app metadata, and API calls [5]. The app's requests for excessive or sensitive

permissions, such as those for messaging, accessibility services, overlays, or background execution, are

often seen as signs of increased platform, financial, or privacy risk. Additionally, the usage of crypto

APIs in apps, reflected calls, and dynamic class loading indicates malicious app activity, such as

attempts to hide behaviour or permit remote command execution. These concerns complicate the

identification of threats through static analysis [6]. The application's attack surface is also expanded by

manifest-level attributes, such as exported components lacking proper access controls, which are

commonly incorporated into risk scoring models [7]. Static analysis is a suitable method for early risk

screening in large-scale situations. Although static analysis-based methods produced satisfactory

results, they struggled to handle environment-specific logic, identify conditional execution paths, and

capture runtime behaviour. The reliability of static indicators can be seriously compromised by many

tactics, including obfuscation, reflection, and encrypted payloads.

3.2 Dynamic Analysis-Based Risk Assessment

Dahiya et al.

eISSN : 3107-8540 29 RACE

Dynamic analysis involves basically monitoring the app's behaviour by running it in a controlled

environment, such as a sandbox. Dynamic analysis identifies actual app usage by monitoring app actual

events, providing insights into risks that may occur during use. Dynamic analysis techniques mostly

concentrate on monitoring system calls, network usage, file system interaction, and user interface usage

[8]. Dynamic analysis is useful for the detection of data exfiltration attacks, inappropriate network

messaging, the usage of premium services, and UI attacks such as the creation of phishing overlays.

Dynamic analysis is quite important in the analysis of logic bombs and trigger-style malicious code,

which behave harmlessly at the time of static analysis. Although dynamic analysis provides strong

positive points for risk analysis by observing the runtime behaviour of apps, it may face significant

challenges in risk assessment. Enhanced modern threats generally exhibit environment-awareness.

These threats alter behaviour in response to timing conditions, leading to missed external triggers or

sandbox behaviour detection [9]. The detection of delayed behaviours through dynamic analysis is

affected by limited execution time in the control environment and poor input coverage. So, dynamic

analysis observations may underestimate the true risk posed by an application when malicious actions

are designed to activate only under real-world conditions. Additionally, dynamic analysis is

inappropriate at large scale due to the time and resource constraints.

3.3 Hybrid Analysis-Based Risk Assessment

Many studies used hybrid analysis approaches that overcome complementary limitations of both static

and dynamic methodologies by combining features from both. The primary objective of hybrid analysis

is to enhance risk assessment by integrating actual usage information from dynamic analysis with the

scalability and completeness of static analysis. In hybrid risk assessment models, dynamic information

features, such as network activity, behavioural data, and user interface activity, are usually combined

with static features, permissions, APIs, and components [10]. By doing so, one can better cover threat

types to examine both latent and visible malicious activity. In particular, hybrid analysis is very helpful

for assessing platform capability abuse and enterprise threats, for which static information indicates

possible paths to abuse, while dynamic information indicates abused behaviours [11]. While hybrid

analysis offers improved expressiveness and robustness, it introduces additional complexity in feature

integration, system design, and computational overhead. The increased cost of analysis can limit

scalability, especially in large-scale app vetting scenarios.

From a standpoint, no single analysis technique provides complete visibility into all threat dimensions.

Table 2 compares different state-of-the-art approaches used in the literature for Android apps risk

assessment. Static analysis is very effective in identifying risks, particularly in the early phases, but

lacks behavioural evidence, and the dynamic analysis that supports it is susceptible to evasive malware

and mixed code coverage. The hybrid approach attempts to strike a middle ground between these two

and to offer a wide range of risk-related information about the apps, but it increases complexity. This

comparative viewpoint emphasises that the desired balance between scalability, depth of analysis, and

tolerance for uncertainty in risk estimate ultimately determines the choice of analytic technique.

 Table 2: Overview and Comparison of Prior Android App Risk Assessment Approaches

References Approach used Used

Features

Risk

Evaluation

Outcomes

Arif et al.

(2021) [12]

Evaluated apps using static

analysis-based fuzzy analytical

hierarchy process risk assessment.

Permission Classified apps

in four risk

levels.

Increase awareness

in granting any

permission request.

Amin et al.

(2019) [13]

Hybrid analyses (static and

dynamic) used to detect

vulnerabilities in Android apps.

Manifest,

source code

Vulnerabilities

identified and

Detect information

leaks and insecure

network requests.

Dahiya et al.

eISSN : 3107-8540 30 RACE

based and

runtime

classified into

three category.

Shrivastava

and Kumar

(2019) [14]

Static analysis is used to evaluate

efficiency of intents and

permissions as a differentiating

feature.

Intent,

Permission

Classified apps

in three

categories.

Assisting how risky

an app is before

installation.

Dhalaria

and

Gandotra

(2022) [15]

An artificial neural network

model is developed to estimate

class probabilities.

Permission Apps classified

into four risk

factors.

A graphical user

interface is

provided to

evaluate risky apps.

Razak et al.

(2019) [16]

Applied Analytic Hierarchy

Process as a decision factor with

static analysis to calculate risk

value.

Permission Classified apps

in four different

risk levels.

Provides effective

risk evaluation with

increased user

awareness.

Sharma

and Gupta

(2018) [17]

Identified risk factors using static

analysis with usage of

permissions in dataset samples.

Permission Classified apps

in four different

risk levels.

Quickly identified

app's intention by

permission requests

Deypir and

Horri

(2018) [18]

Introduced a risk estimation

metric that uses previously known

malicious and non-malicious app

instances.

Instance

based

Risk score

calculated for

apps.

Effectively assign

high risk score to

malware apps.

Xiao et al.

(2020) [19]

Combined collaborative filtering

with static analysis to find the

minimum consents needed for an

app.

Permission,

API usage

Risk value

identified for

apps.

Evaluates over

privilege risk of

apps by examining

app’s additional

privileges.

Malleswari

et al.

(2017) [20]

Combined static permission

analysis with different factors to

estimate the risk score.

Permission Risk score

calculated for

apps.

Increasing

awareness about

privacy risk.

Son et al.

(2022) [21]

A hybrid code analysis is used to

determine whether app requests

more than required and whether

collected data is used locally or

externally.

Static and

dynamic

code

features

Classified into

five different

risk levels.

Encouraging

evaluation results

with two different

groups (users and

crowd workers).

Yoo et al.

(2019) [22]

Introduced a visual analytics

system that enables observation,

mitigation, and assessment of the

effect of security risks.

Permission Risk score

assigned to

apps.

Easily recognise

unintended security

activities using

lifelog risk views.

Merlo and

Georgiu

(2017) [23]

Applied different machine

learning techniques for app risk

analysis.

Permission Provides

reliable risk

index value

Provide reliable

estimation using

multiple permission

usage patterns

Sanna et al.

(2024) [24]

Provided the approach for

checking the vulnerabilities of

native code in apps.

Static

native code

components

inspection

Risk score

assigned to

apps.

Aid researchers and

developers in

mitigating

immediate risks.

Dahiya et al.

eISSN : 3107-8540 31 RACE

Dahiya et

al. [25]

Static analysis based demeanour

study of apps.

Permission Classified apps

in five different

risk levels.

Prior to installing an

app, determine the

level of danger.

Existing studies typically use static, dynamic, or hybrid analysis techniques to extract security-relevant

indicators (Figure 2), which are then processed using rule-based or learning-based models to produce

risk scores, rankings, or categorical risk levels rather than binary decisions. In the current threat analysis

of Android applications, risk assessment methods primarily focus on single analysis parameters. To

obtain a comprehensive understanding of application risk profiles, an integrated model that combines

code-level vulnerabilities, authorisation requirements, runtime behaviour, application purpose,

reputation, and marketplace placement is required. This multifaceted assessment approach can guide

security analysts in making more informed decisions to protect users and promote innovation in the

Android ecosystem.

 Figure 2: General workflow of risk assessment that follow in the literature

4. Analysis of Feature-Level Risk Indicators

The literature review of this work has been completed, with a representative analysis that identifies

empirical observations discussed here. A sufficient number of AndroZoo [26] dataset app samples have

been analysed to examine how commonly used application features relate to application risk. Various

machine learning classifiers are used for classification with static features derived from requested

permissions and invoked API calls. A CatBoost [27] classifier yielded the best results among these. The

features that play the most important role in the classifier's decision-making are identified along with

their importance values. This analysis identifies features that consistently exhibit strong associations

with risk-related behaviour. The classifier's feature importance scores are used to rank permissions and

API calls by their contribution to the classification outcome, and the top 20 features in each category

are shown in Figures 3 and 4, which visualise their relative influence. To put these findings into context

from a risk assessment perspective, the risk impact of these highly influential features, which can affect

user devices, is shown in Table 3, taking into account privacy disclosure risks, financial fraud risks, and

platform capability risks. This table shows that misuse of these highly influential features can affect

users and devices in different ways, such as an application requesting read phone state permission

without a clear need, pointing to suspicious activity that can impact anonymity, and leading to data and

privacy leakage. An app whose main task is related to the calendar but that asks for storage and device

state permissions indicates suspicious behaviour.

 Table 3: Security Implications of High-Importance Features

Feature Security Implications

“android_permission

_read_phone_state”

Most legitimate app features do not require detailed phone state information.

Misuse of this permission is commonly associated with loss of anonymity,

data leakage, tracking, and privacy-invasive behaviour.

“android_permission

_send_sms”

Few modern apps genuinely need to send SMS automatically. If an app that

is not a core messaging or telecom app requests SEND_SMS, it can be

associated with financial fraud, subscription abuse, spam propagation,

Dahiya et al.

eISSN : 3107-8540 32 RACE

account compromise, and delaying user awareness of outgoing messages

when combined with other permissions.

“android.telephony.T

elephonyManager.ge

tDeviceId”

It exposes non-resettable persistent identifiers that do not change across app

reinstalls or device reboots. From a security perspective, its misuse has

serious privacy implications.

“android.app.Activit

yManager.getRunnin

gTasks”

It allows an app to obtain information about tasks and activities currently or

recently running on the device. Misuse of this API is commonly associated

with privacy and monitoring concerns, user behaviour surveillance,

credential harvesting, targeted exploitation, and bypassing user awareness.

“android_permission

_receive_boot_compl

eted”

Legitimate apps such as alarms or system utilities may need this permission.

If an app without a clear need to start at boot requests, it signals a risk of

stealthy execution, battery and resource abuse, early-stage surveillance,

combination attacks, and persistent behaviour.

“android_permission

_get_tasks”

It allows an app to retrieve information about tasks and applications running

on the device. Misuse of this permission is commonly associated with user

activity tracking, privacy leakage, phishing attacks, silent surveillance,

adaptive malware behaviour, and credential-stealing attacks.

“java.io.FileNotFoun

dException.<init>”

It is not malicious by nature, but in behavioural analysis, it can act as a weak

signal of file probing or environment detection. It can be used to decide

whether to activate malicious behaviour and data access attempts.

“java.util.zip.ZipFile.

<init>”

This API is common and legitimate, but in security analysis, its context of

use is important. It can be used to support hidden payload loading, evasion

techniques, dynamic code execution, dropper behaviour, and obfuscation of

malicious resources.

“android_permission

_write_external_stor

age”

It allows an app to write data to shared storage, which is accessible by other

apps or the user. If an app requests user-accessible files without a clear need

to store them, it can be associated with data leakage, malware persistence,

payload staging, tampering and corruption, and hiding malicious files.

“android.os.Parcel.w

riteLong”

This API is neutral by itself. It acts as a contextual feature that may indicate

hidden data exchange, component communication, privilege abuse, or

obfuscation of behaviour.

 Figure 3: Most Influential Permissions for Classification

Dahiya et al.

eISSN : 3107-8540 33 RACE

 Figure 4: Most Influential API Calls for Classification

5. Future work

The analysis indicates that, though static, dynamic, and hybrid approaches remain very popular, each

has its own trade-offs regarding scalability, behaviour coverage, and resistance to evasion attacks.

Learning models, such as machine learning and deep learning, have been shown to improve the ability

to combine indicators into risk scores or rankings, but they rely on datasets that may lack temporal

coverage and risk labelling. Existing solutions struggle to model the behaviour of delayed, context-

dependent actions, especially those related to UI deception, logic bombs, and the misuse of legitimate

services for malicious purposes. Moreover, the solution, which impairs transparency of explanations,

makes it difficult to implement within decision-making mechanisms involving consumers,

organisations, or regulators. Furthermore, no standardised benchmark or evaluation metric is defined in

risk assessments. In the future, the research should aim to develop context-aware, explainable risk

assessment systems that articulate user, device, and deployment contexts. Lightweight risk analysis

pipelines are needed to enable large-scale app risk scanning. The longitudinal data sources and

standardised risk definition will enable the research to evaluate the study in the future. Finally, building

bridges between the existing mobile and cloud security ecosystems and the Android app risk evaluation

environment may be a good way to address the new cross-platform threats.

6. Conclusions

This paper conducted an appraisal of existing approaches to Android app risk evaluation models within

a risk-based taxonomy, as defined by the existing literature. In this, it showcased how contemporary

research has moved from simple binary malicious-code detection to a much more complex

understanding of application-related risks, taking into account privacy abuse, financial threats,

deceptive user interface, platform abuse, and business impact. This paper is able to point out the efforts

put forth by existing work, aside from malware identification, towards risk representation, their

strength, as well as existing challenges.

Funding source

No funding was received for this study.

Conflict of Interest

There is no conflict of interest.

Dahiya et al.

eISSN : 3107-8540 34 RACE

References

 [1] S. Maganur, Y. Jiang, J. Huang, and F. Zhong, ‘Feature-Centric Approaches to Android Malware

Analysis: A Survey’, Computers, vol. 14, no. 11, p. 482, Nov. 2025, doi:

10.3390/computers14110482.

[2] A. Ruggia, D. Nisi, S. Dambra, A. Merlo, D. Balzarotti, and S. Aonzo, ‘Unmasking the Veiled: A

Comprehensive Analysis of Android Evasive Malware’, in Proceedings of the 19th ACM Asia

Conference on Computer and Communications Security, Singapore: ACM, Jul. 2024, pp. 383–398,

doi: 10.1145/3634737.3637658.

[3] A. Kar, N. Stakhanova, and E. Branca, ‘Detecting Overlay Attacks in Android’, Procedia

Computer Science, vol. 231, pp. 137–144, 2024, doi: 10.1016/j.procs.2023.12.185.

[4] A. Dahiya, S. Singh, and G. Shrivastava, ‘Android malware analysis and detection: A systematic

review’, Expert Systems, p. e13488, Oct. 2023, doi: 10.1111/exsy.13488.

[5] Q. Wu, X. Zhu, and B. Liu, ‘A Survey of Android Malware Static Detection Technology Based on

Machine Learning’, Mobile Information Systems, vol. 2021, pp. 1–18, Mar. 2021, doi:

10.1155/2021/8896013.

[6] Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong, and R. Riley, ‘DyDroid: Measuring Dynamic Code

Loading and Its Security Implications in Android Applications’, in 2017 47th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), Jun. 2017, pp. 415–426,

doi: 10.1109/DSN.2017.14.

[7] A. Dahiya, S. Singh, and G. Shrivastava, ‘Lightweight and Efficient Android Malware Detection

Using Manifest File Analysis’, in 2025 International Conference on Networks and Cryptology

(NETCRYPT), May 2025, pp. 1246–1251, doi: 10.1109/NETCRYPT65877.2025.11102561.

[8] T. Sutter, T. Kehrer, M. Rennhard, B. Tellenbach, and J. Klein, ‘Dynamic Security Analysis on

Android: A Systematic Literature Review’, IEEE Access, vol. 12, pp. 57261–57287, 2024, doi:

10.1109/ACCESS.2024.3390612.

[9] B. Kondracki, B. A. Azad, N. Miramirkhani, and N. Nikiforakis, ‘The Droid is in the Details:

Environment-aware Evasion of Android Sandboxes’, in Proceedings 2022 Network and

Distributed System Security Symposium, 2022, doi: 10.14722/ndss.2022.23056.

[10] A. Dahiya, S. Singh, and G. Shrivastava, ‘Malware Detection Insights, Mechanisms and Future

Perspectives for Android Applications’, in Innovative Computing and Communications, vol. 1021,

Singapore: Springer Nature Singapore, 2024, pp. 381–403, doi: 10.1007/978-981-97-3591-4_31.

[11] M. Choudhary and B. Kishore, ‘HAAMD: Hybrid Analysis for Android Malware Detection’, in

2018 International Conference on Computer Communication and Informatics (ICCCI), Jan. 2018,

pp. 1–4, doi: 10.1109/ICCCI.2018.8441295.

[12] J. Mohamad Arif, M. F. Ab Razak, S. R. Tuan Mat, S. Awang, N. S. N. Ismail, and A. Firdaus,

‘Android mobile malware detection using fuzzy AHP’, Journal of Information Security and

Applications, vol. 61, p. 102929, Sep. 2021, doi: 10.1016/j.jisa.2021.102929.

[13] A. Amin, A. Eldessouki, M. T. Magdy, N. Abdeen, H. Hindy, and I. Hegazy, ‘AndroShield:

Automated Android Applications Vulnerability Detection, a Hybrid Static and Dynamic Analysis

Approach’, Information, vol. 10, no. 10, p. 326, Oct. 2019, doi: 10.3390/info10100326.

[14] G. Shrivastava and P. Kumar, ‘SensDroid: Analysis for Malicious Activity Risk of Android

Application’, Multimed Tools Appl, vol. 78, no. 24, pp. 35713–35731, Dec. 2019, doi:

10.1007/s11042-019-07899-1.

[15] M. Dhalaria and E. Gandotra, ‘Risk Detection of Android Applications Using Static Permissions’,

in Advances in Data Computing, Communication and Security, Singapore: Springer Nature, 2022,

pp. 591–600, doi: 10.1007/978-981-16-8403-6_54.

Dahiya et al.

eISSN : 3107-8540 35 RACE

[16] M. F. A. Razak, N. B. Anuar, R. Salleh, A. Firdaus, M. Faiz, and H. S. Alamri, ‘“Less Give More”:

Evaluate and zoning Android applications’, Measurement, vol. 133, pp. 396–411, Feb. 2019, doi:

10.1016/j.measurement.2018.10.034.

[17] K. Sharma and B. B. Gupta, ‘Mitigation and risk factor analysis of android applications’,

Computers & Electrical Engineering, vol. 71, pp. 416–430, Oct. 2018, doi:

10.1016/j.compeleceng.2018.08.003.

[18] M. Deypir and A. Horri, ‘Instance based security risk value estimation for Android applications’,

Journal of Information Security and Applications, vol. 40, pp. 20–30, Jun. 2018, doi:

10.1016/j.jisa.2018.02.002.

[19] J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, ‘An Android application risk evaluation framework

based on minimum permission set identification’, Journal of Systems and Software, vol. 163, p.

110533, May 2020, doi: 10.1016/j.jss.2020.110533.

 [20]D. Naga Malleswari, A. Dhavalya, V. Divya Sai, and K. Srikanth, ‘A detailed study on risk

assessment of mobile app permissions’, IJET, vol. 7, no. 1.1, p. 297, Dec. 2017, doi:

10.14419/ijet.v7i1.1.9706.

[21] H. X. Son, B. Carminati, and E. Ferrari, ‘A Risk Estimation Mechanism for Android Apps based

on Hybrid Analysis’, Data Sci. Eng., vol. 7, no. 3, pp. 242–252, Sep. 2022, doi: 10.1007/s41019-

022-00189-1.

[22] S. Yoo, H. R. Ryu, H. Yeon, T. Kwon, and Y. Jang, ‘Visual analytics and visualization for android

security risk’, Journal of Computer Languages, vol. 53, pp. 9–21, Aug. 2019, doi:

10.1016/j.cola.2019.03.004.

[23] A. Merlo and G. C. Georgiu, ‘RiskInDroid: Machine Learning-Based Risk Analysis on Android’,

in ICT Systems Security and Privacy Protection, vol. 502, Cham: Springer International Publishing,

2017, pp. 538–552, doi: 10.1007/978-3-319-58469-0_36.

[24] S. L. Sanna, D. Soi, D. Maiorca, G. Fumera, and G. Giacinto, ‘A risk estimation study of native

code vulnerabilities in Android applications’, Journal of Cybersecurity, vol. 10, no. 1, p. tyae015,

Jan. 2024, doi: 10.1093/cybsec/tyae015.

[25] A. Dahiya, S. Singh, and G. Shrivastava, ‘PRAZdroid: A Novel Approach to Risk Assessment and

Zoning of Android Applications based on Permissions’, SCPE, vol. 26, no. 4, Jun. 2025, doi:

10.12694/scpe.v26i4.4439.

[26] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ‘AndroZoo: collecting millions of Android

apps for the research community’, in Proceedings of the 13th International Conference on Mining

Software Repositories, Austin Texas: ACM, May 2016, pp. 468–471, doi:

10.1145/2901739.2903508.

 [27]L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, ‘CatBoost: unbiased

boosting with categorical features’, in Advances in Neural Information Processing Systems, 2018,

p.31.

