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ABSTRACT 

Android application security research has been dominated by the malware-detection paradigm, in which 

either benign or malicious labels are assigned to applications. Although effective in terms of large-scale 

screening, this binary perspective is not effective to capture the diverse risks brought about by modern 

Android applications, such as privacy leakage, financial abuse, intrusive tracking, and misuse of system 

resources. This work provides a structured review of the research efforts on Android app assessment 

models from a risk-oriented perspective. Rather than proposing new techniques for detection, this 

review synthesizes the existing literature and organizes prior work through a multi-dimensional 

taxonomy with respect to risk modelling granularity, risk semantics, evidence sources, learning 

paradigms, and interpretability. This paper reveals important trends, constraints, and unresolved issues 

by analysing how current approaches conceptualise and depict risk. The purpose of the article is to 

outline the shift from malware detection to thorough application risk assessment and to provide a 

comprehensive reference for future Android security research. 

 Keywords: Android security, Malicious activities, User privacy, Application Trust & Risk, Application metadata, 

Risk assessment.  

1. Introduction 

Due to Android's widespread use, a vast ecosystem of apps has appeared from entities with diverse 

security policies and motivations. The diverse apps reached users through the official Play Store and 

third-party app stores. Security experts have noted that with diversity, the different versions of malicious 

programs have increased continuously, and new families of malware are occurring at an alarming rate 

[1]. The previous malware basically concentrated on premium SMS fraud and basic identity theft, but 

today's threat environment has enhanced. Today's threat strategy includes ransomware, highly targeted 

spyware, banking trojans, cryptocurrency miners.  Detection is avoided by evasion tactics that adapt to 

timing triggers or device conditions.  An enhanced detection challenge is presented by dynamic code 

loading, code obfuscation, encryption of malicious payloads, and polymorphic behaviour 

[2].  Especially the proliferation of "logic bombs" threats, which do not trigger during security 

evaluations but start maliciously working when certain conditions are met in real-world circumstances, 

has raised security concerns. 

Another obstacle is threats that can misuse legitimate platform functions as weaponry to commit 

malicious conduct. The best example of this is an overlay attack, which can exploit the platform's screen 

rendering feature to create phishing pages that steal user credentials. These types of attacks mainly 

exploit authorised system functionalities and make themselves harder to detect [3]. Moreover, 
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increasing use of mobile apps, IoT devices, cloud services, and enterprise services enhanced the 

complexity of threat identification by progressively increasing the threats. Figure 1 highlights some 

devices from a wide range of devices powered by the Android platform, such as mobile phones, 

wearables, tablets, ATMs, GPS devices and other smart devices. The deployment of Android across 

heterogeneous devices increases the surface area for attackers, enabling propagation of security threats 

introduced by mobile applications across multiple endpoints. Malicious activities can likely affect the 

privacy of the country and its users, organisational infrastructure, and various imperative domains such 

as the healthcare, education, and finance sectors.   

 

 

 

 

 

 

 

 

 

                                                   Figure 1: Some Android-powered devices       

The famous malware incidents, such as FluBot, Xenomorph, and Joker, demonstrate how malware can 

access official app stores by evading detection mechanisms and cause significant security 

harm.  Several methods based on static and dynamic analysis and machine learning have been proposed 

to analyse Android applications for protection [4]. Most of these works have been framed as malware 

detection mechanisms, with the primary objective of distinguishing malicious applications from benign 

ones. This work analysed existing Android app assessment research from a risk-oriented perspective 

and reached a determination. The primary objective is to structure the risk assessment field, highlight 

its limitations, and foster a clearer understanding of how risk is currently assessed in Android 

applications.  

2. Background  

In risk analysis, different types of weaknesses are identified, such as permission misuse in the app, 

misuse of legitimate platform APIs in the app, and privacy leakage in the app. From the perspective of 

risk assessment, Table 1 lists the primary threats to the Android platform, their corresponding 

mechanisms, the significant risk impact, and the entities that are impacted. The information 

Applications use rather than their initial intention raises privacy concerns. Financial losses are mostly 

caused by illegal transactions, stolen banking credentials, and the misuse of premium SMS services. 

Phishing overlays and forged calls are pointing to user interface risks. Misuse of accessibility services, 

abuse of background execution permissions, and abuse of inter-component communication are 

examples of platform dangers.  

Android apps can act as gateways for lateral movement and even for the integration of compromised 

cloud services, posing organisational hazards in the corporate world. Risk-oriented techniques usually 

produce a risk score, rating, or category that represents the likelihood and severity of potential harm 

rather than a single output, such as a yes or no verdict. In situations where prioritisation and contextual 

decision-making are necessary, such as app marketplace screening, enterprise mobile management, and 

regulatory compliance, this distinction is very crucial. This work thus focuses on risk assessment models 
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for Android apps that have been proposed in the literature utilising classical machine learning, deep 

learning, and rule-based risk modelling strategies in addition to static, dynamic, and hybrid analysis 

techniques. 

                              Table 1: Risk-Oriented Taxonomy of Android Apps Threats 

Threat Type Common Mechanisms  Impact Affected Entities 

Financial fraud Premium services abuse, billing 

API exploitation 

Monetary loss Users, banks 

Privacy abuse Sensor misuse, background 

tracking 

Sensitive data 

leakage 

End users and 

platform providers 

User interface 

deception 

Overlay attacks, phishing 

interfaces, fraudulent login 

screens, clickjacking 

Credential 

compromise 

End users 

Platform 

capability abuse 

Misuse of accessibility services, 

privilege escalation mechanisms 

System integrity 

compromise 

Device ecosystem 

Enterprise-

oriented threats 

Credential harvesting and reuse, 

unauthorized service access 

Network and 

organizational breach 

Enterprises 

Resource abuse Cryptomining, excessive 

background execution 

Device degradation 

and energy drain 

End users 

Communication 

abuse 

Covert network channels, data 

exfiltration over encrypted traffic 

Information leakage 

and control loss 

Users, 

organizations 

3. Analysis Mechanisms for Android App Risk Assessment 

The main analysis techniques used in current Android app risk assessment models are examined in this 

section. Static, dynamic, and hybrid approaches can be used to broadly classify malicious activities, 

each of which provides varying degrees of insight into application behaviour and related risk factors. 

Further analysis approaches considered miscellaneous perspectives for protection. 

3.1 Static Analysis-Based Risk Assessment 

Static analysis is the most commonly used analysis approach, evaluating apps without executing them 

and conducting app package, manifest, and source- or bytecode-level reviews to identify issues. Static 

analysis is used to infer an app’s capabilities and intent, which can indicate potential risk even in the 

absence of observed malicious behaviour that can be identified by running the app. The most popular 

features of an app that can be identified in static analysis are static app permissions, declared 

components, intent filters, app metadata, and API calls [5]. The app's requests for excessive or sensitive 

permissions, such as those for messaging, accessibility services, overlays, or background execution, are 

often seen as signs of increased platform, financial, or privacy risk. Additionally, the usage of crypto 

APIs in apps, reflected calls, and dynamic class loading indicates malicious app activity, such as 

attempts to hide behaviour or permit remote command execution. These concerns complicate the 

identification of threats through static analysis [6]. The application's attack surface is also expanded by 

manifest-level attributes, such as exported components lacking proper access controls, which are 

commonly incorporated into risk scoring models [7]. Static analysis is a suitable method for early risk 

screening in large-scale situations. Although static analysis-based methods produced satisfactory 

results, they struggled to handle environment-specific logic, identify conditional execution paths, and 

capture runtime behaviour. The reliability of static indicators can be seriously compromised by many 

tactics, including obfuscation, reflection, and encrypted payloads. 

3.2 Dynamic Analysis-Based Risk Assessment 
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Dynamic analysis involves basically monitoring the app's behaviour by running it in a controlled 

environment, such as a sandbox. Dynamic analysis identifies actual app usage by monitoring app actual 

events, providing insights into risks that may occur during use. Dynamic analysis techniques mostly 

concentrate on monitoring system calls, network usage, file system interaction, and user interface usage 

[8]. Dynamic analysis is useful for the detection of data exfiltration attacks, inappropriate network 

messaging, the usage of premium services, and UI attacks such as the creation of phishing overlays. 

Dynamic analysis is quite important in the analysis of logic bombs and trigger-style malicious code, 

which behave harmlessly at the time of static analysis. Although dynamic analysis provides strong 

positive points for risk analysis by observing the runtime behaviour of apps, it may face significant 

challenges in risk assessment. Enhanced modern threats generally exhibit environment-awareness. 

These threats alter behaviour in response to timing conditions, leading to missed external triggers or 

sandbox behaviour detection [9]. The detection of delayed behaviours through dynamic analysis is 

affected by limited execution time in the control environment and poor input coverage. So, dynamic 

analysis observations may underestimate the true risk posed by an application when malicious actions 

are designed to activate only under real-world conditions. Additionally, dynamic analysis is 

inappropriate at large scale due to the time and resource constraints. 

3.3 Hybrid Analysis-Based Risk Assessment 

Many studies used hybrid analysis approaches that overcome complementary limitations of both static 

and dynamic methodologies by combining features from both. The primary objective of hybrid analysis 

is to enhance risk assessment by integrating actual usage information from dynamic analysis with the 

scalability and completeness of static analysis. In hybrid risk assessment models, dynamic information 

features, such as network activity, behavioural data, and user interface activity, are usually combined 

with static features, permissions, APIs, and components [10]. By doing so, one can better cover threat 

types to examine both latent and visible malicious activity. In particular, hybrid analysis is very helpful 

for assessing platform capability abuse and enterprise threats, for which static information indicates 

possible paths to abuse, while dynamic information indicates abused behaviours [11]. While hybrid 

analysis offers improved expressiveness and robustness, it introduces additional complexity in feature 

integration, system design, and computational overhead. The increased cost of analysis can limit 

scalability, especially in large-scale app vetting scenarios.  

From a standpoint, no single analysis technique provides complete visibility into all threat dimensions. 

Table 2 compares different state-of-the-art approaches used in the literature for Android apps risk 

assessment. Static analysis is very effective in identifying risks, particularly in the early phases, but 

lacks behavioural evidence, and the dynamic analysis that supports it is susceptible to evasive malware 

and mixed code coverage. The hybrid approach attempts to strike a middle ground between these two 

and to offer a wide range of risk-related information about the apps, but it increases complexity. This 

comparative viewpoint emphasises that the desired balance between scalability, depth of analysis, and 

tolerance for uncertainty in risk estimate ultimately determines the choice of analytic technique. 

           Table 2: Overview and Comparison of Prior Android App Risk Assessment Approaches 

References Approach used Used 

Features  

Risk 

Evaluation 

Outcomes 

Arif et al. 

(2021) [12] 

Evaluated apps using static 

analysis-based fuzzy analytical 

hierarchy process risk assessment. 

Permission Classified apps 

in four risk 

levels. 

Increase awareness 

in granting any 

permission request. 

Amin et al. 

(2019) [13] 

Hybrid analyses (static and 

dynamic) used to detect 

vulnerabilities in Android apps. 

Manifest, 

source code 

Vulnerabilities 

identified and 

Detect information 

leaks and insecure 

network requests. 
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based and 

runtime 

classified into 

three category. 

Shrivastava 

and Kumar 

(2019) [14] 

Static analysis is used to evaluate 

efficiency of intents and 

permissions as a differentiating 

feature. 

Intent, 

Permission 

Classified apps 

in three 

categories. 

Assisting how risky 

an app is before 

installation.  

Dhalaria 

and 

Gandotra 

(2022) [15] 

An artificial neural network 

model is developed to estimate 

class probabilities.  

 

Permission  Apps classified 

into four risk 

factors. 

A graphical user 

interface is 

provided to 

evaluate risky apps. 

Razak et al. 

(2019) [16] 

Applied Analytic Hierarchy 

Process as a decision factor with 

static analysis to calculate risk 

value. 

Permission  Classified apps 

in four different 

risk levels. 

Provides effective 

risk evaluation with 

increased user 

awareness.  

Sharma 

and Gupta 

(2018) [17] 

Identified risk factors using static 

analysis with usage of 

permissions in dataset samples. 

Permission Classified apps 

in four different 

risk levels. 

Quickly identified 

app's intention by 

permission requests 

Deypir and 

Horri 

(2018) [18] 

Introduced a risk estimation 

metric that uses previously known 

malicious and non-malicious app 

instances. 

Instance 

based 

Risk score 

calculated for 

apps. 

Effectively assign 

high risk score to 

malware apps. 

Xiao et al. 

(2020) [19] 

Combined collaborative filtering 

with static analysis to find the 

minimum consents needed for an 

app. 

 

Permission, 

API usage 

Risk value 

identified for 

apps. 

Evaluates over 

privilege risk of 

apps by examining 

app’s additional 

privileges. 

Malleswari 

et al. 

(2017) [20] 

Combined static permission 

analysis with different factors to 

estimate the risk score. 

Permission  Risk score 

calculated for 

apps. 

Increasing 

awareness about 

privacy risk. 

Son et al. 

(2022) [21] 

A hybrid code analysis is used to 

determine whether app requests 

more than required and whether 

collected data is used locally or 

externally. 

Static and 

dynamic 

code 

features 

Classified into 

five different 

risk levels.  

Encouraging 

evaluation results 

with two different 

groups (users and 

crowd workers). 

Yoo et al. 

(2019) [22] 

Introduced a visual analytics 

system that enables observation, 

mitigation, and assessment of the 

effect of security risks. 

Permission  Risk score 

assigned to 

apps. 

Easily recognise 

unintended security 

activities using 

lifelog risk views. 

Merlo and 

Georgiu 

(2017) [23] 

Applied different machine 

learning techniques for app risk 

analysis. 

Permission  Provides 

reliable risk 

index value 

Provide reliable 

estimation using 

multiple permission 

usage patterns 

Sanna et al. 

(2024) [24] 

Provided the approach for 

checking the vulnerabilities of 

native code in apps.  

Static 

native code 

components 

inspection  

Risk score 

assigned to 

apps. 

Aid researchers and 

developers in 

mitigating 

immediate risks. 
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Dahiya et 

al. [25] 

Static analysis based demeanour 

study of apps. 

 

Permission  Classified apps 

in five different 

risk levels. 

Prior to installing an 

app, determine the 

level of danger. 

 

Existing studies typically use static, dynamic, or hybrid analysis techniques to extract security-relevant 

indicators (Figure 2), which are then processed using rule-based or learning-based models to produce 

risk scores, rankings, or categorical risk levels rather than binary decisions. In the current threat analysis 

of Android applications, risk assessment methods primarily focus on single analysis parameters. To 

obtain a comprehensive understanding of application risk profiles, an integrated model that combines 

code-level vulnerabilities, authorisation requirements, runtime behaviour, application purpose, 

reputation, and marketplace placement is required. This multifaceted assessment approach can guide 

security analysts in making more informed decisions to protect users and promote innovation in the 

Android ecosystem. 

                   Figure 2: General workflow of risk assessment that follow in the literature 

4. Analysis of Feature-Level Risk Indicators 

The literature review of this work has been completed, with a representative analysis that identifies 

empirical observations discussed here. A sufficient number of AndroZoo [26] dataset app samples have 

been analysed to examine how commonly used application features relate to application risk. Various 

machine learning classifiers are used for classification with static features derived from requested 

permissions and invoked API calls. A CatBoost [27] classifier yielded the best results among these. The 

features that play the most important role in the classifier's decision-making are identified along with 

their importance values. This analysis identifies features that consistently exhibit strong associations 

with risk-related behaviour. The classifier's feature importance scores are used to rank permissions and 

API calls by their contribution to the classification outcome, and the top 20 features in each category 

are shown in Figures 3 and 4, which visualise their relative influence. To put these findings into context 

from a risk assessment perspective, the risk impact of these highly influential features, which can affect 

user devices, is shown in Table 3, taking into account privacy disclosure risks, financial fraud risks, and 

platform capability risks. This table shows that misuse of these highly influential features can affect 

users and devices in different ways, such as an application requesting read phone state permission 

without a clear need, pointing to suspicious activity that can impact anonymity, and leading to data and 

privacy leakage. An app whose main task is related to the calendar but that asks for storage and device 

state permissions indicates suspicious behaviour. 

                                  Table 3: Security Implications of High-Importance Features 

Feature  Security Implications  

“android_permission

_read_phone_state” 

Most legitimate app features do not require detailed phone state information. 

Misuse of this permission is commonly associated with loss of anonymity, 

data leakage, tracking, and privacy-invasive behaviour. 

“android_permission

_send_sms” 

Few modern apps genuinely need to send SMS automatically. If an app that 

is not a core messaging or telecom app requests SEND_SMS, it can be 

associated with financial fraud, subscription abuse, spam propagation, 
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account compromise, and delaying user awareness of outgoing messages 

when combined with other permissions.  

“android.telephony.T

elephonyManager.ge

tDeviceId” 

It exposes non-resettable persistent identifiers that do not change across app 

reinstalls or device reboots. From a security perspective, its misuse has 

serious privacy implications.  

“android.app.Activit

yManager.getRunnin

gTasks” 

It allows an app to obtain information about tasks and activities currently or 

recently running on the device.  Misuse of this API is commonly associated 

with privacy and monitoring concerns, user behaviour surveillance, 

credential harvesting, targeted exploitation, and bypassing user awareness. 

“android_permission

_receive_boot_compl

eted” 

Legitimate apps such as alarms or system utilities may need this permission. 

If an app without a clear need to start at boot requests, it signals a risk of 

stealthy execution, battery and resource abuse, early-stage surveillance, 

combination attacks, and persistent behaviour. 

“android_permission

_get_tasks” 

It allows an app to retrieve information about tasks and applications running 

on the device. Misuse of this permission is commonly associated with user 

activity tracking, privacy leakage, phishing attacks, silent surveillance, 

adaptive malware behaviour, and credential-stealing attacks. 

“java.io.FileNotFoun

dException.<init>” 

It is not malicious by nature, but in behavioural analysis, it can act as a weak 

signal of file probing or environment detection. It can be used to decide 

whether to activate malicious behaviour and data access attempts. 

“java.util.zip.ZipFile.

<init>” 

This API is common and legitimate, but in security analysis, its context of 

use is important. It can be used to support hidden payload loading, evasion 

techniques, dynamic code execution, dropper behaviour, and obfuscation of 

malicious resources. 

“android_permission

_write_external_stor

age” 

It allows an app to write data to shared storage, which is accessible by other 

apps or the user. If an app requests user-accessible files without a clear need 

to store them, it can be associated with data leakage, malware persistence, 

payload staging, tampering and corruption, and hiding malicious files. 

“android.os.Parcel.w

riteLong” 

This API is neutral by itself. It acts as a contextual feature that may indicate 

hidden data exchange, component communication, privilege abuse, or 

obfuscation of behaviour.  

 

                                   Figure 3: Most Influential Permissions for Classification 
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                                        Figure 4: Most Influential API Calls for Classification 

5. Future work 

The analysis indicates that, though static, dynamic, and hybrid approaches remain very popular, each 

has its own trade-offs regarding scalability, behaviour coverage, and resistance to evasion attacks. 

Learning models, such as machine learning and deep learning, have been shown to improve the ability 

to combine indicators into risk scores or rankings, but they rely on datasets that may lack temporal 

coverage and risk labelling. Existing solutions struggle to model the behaviour of delayed, context-

dependent actions, especially those related to UI deception, logic bombs, and the misuse of legitimate 

services for malicious purposes. Moreover, the solution, which impairs transparency of explanations, 

makes it difficult to implement within decision-making mechanisms involving consumers, 

organisations, or regulators. Furthermore, no standardised benchmark or evaluation metric is defined in 

risk assessments. In the future, the research should aim to develop context-aware, explainable risk 

assessment systems that articulate user, device, and deployment contexts. Lightweight risk analysis 

pipelines are needed to enable large-scale app risk scanning. The longitudinal data sources and 

standardised risk definition will enable the research to evaluate the study in the future. Finally, building 

bridges between the existing mobile and cloud security ecosystems and the Android app risk evaluation 

environment may be a good way to address the new cross-platform threats. 

6. Conclusions 

This paper conducted an appraisal of existing approaches to Android app risk evaluation models within 

a risk-based taxonomy, as defined by the existing literature. In this, it showcased how contemporary 

research has moved from simple binary malicious-code detection to a much more complex 

understanding of application-related risks, taking into account privacy abuse, financial threats, 

deceptive user interface, platform abuse, and business impact.  This paper is able to point out the efforts 

put forth by existing work, aside from malware identification, towards risk representation, their 

strength, as well as existing challenges. 
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