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ABSTRACT

Android application security research has been dominated by the malware-detection paradigm, in which
either benign or malicious labels are assigned to applications. Although effective in terms of large-scale
screening, this binary perspective is not effective to capture the diverse risks brought about by modern
Android applications, such as privacy leakage, financial abuse, intrusive tracking, and misuse of system
resources. This work provides a structured review of the research efforts on Android app assessment
models from a risk-oriented perspective. Rather than proposing new techniques for detection, this
review synthesizes the existing literature and organizes prior work through a multi-dimensional
taxonomy with respect to risk modelling granularity, risk semantics, evidence sources, learning
paradigms, and interpretability. This paper reveals important trends, constraints, and unresolved issues
by analysing how current approaches conceptualise and depict risk. The purpose of the article is to
outline the shift from malware detection to thorough application risk assessment and to provide a
comprehensive reference for future Android security research.

Keywords: Android security, Malicious activities, User privacy, Application Trust & Risk, Application metadata,
Risk assessment.

1. Introduction

Due to Android's widespread use, a vast ecosystem of apps has appeared from entities with diverse
security policies and motivations. The diverse apps reached users through the official Play Store and
third-party app stores. Security experts have noted that with diversity, the different versions of malicious
programs have increased continuously, and new families of malware are occurring at an alarming rate
[1]. The previous malware basically concentrated on premium SMS fraud and basic identity theft, but
today's threat environment has enhanced. Today's threat strategy includes ransomware, highly targeted
spyware, banking trojans, cryptocurrency miners. Detection is avoided by evasion tactics that adapt to
timing triggers or device conditions. An enhanced detection challenge is presented by dynamic code
loading, code obfuscation, encryption of malicious payloads, and polymorphic behaviour
[2]. Especially the proliferation of "logic bombs" threats, which do not trigger during security
evaluations but start maliciously working when certain conditions are met in real-world circumstances,
has raised security concerns.

Another obstacle is threats that can misuse legitimate platform functions as weaponry to commit
malicious conduct. The best example of this is an overlay attack, which can exploit the platform's screen
rendering feature to create phishing pages that steal user credentials. These types of attacks mainly
exploit authorised system functionalities and make themselves harder to detect [3]. Moreover,
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increasing use of mobile apps, IoT devices, cloud services, and enterprise services enhanced the
complexity of threat identification by progressively increasing the threats. Figure 1 highlights some
devices from a wide range of devices powered by the Android platform, such as mobile phones,
wearables, tablets, ATMs, GPS devices and other smart devices. The deployment of Android across
heterogeneous devices increases the surface area for attackers, enabling propagation of security threats
introduced by mobile applications across multiple endpoints. Malicious activities can likely affect the
privacy of the country and its users, organisational infrastructure, and various imperative domains such
as the healthcare, education, and finance sectors.

Figure 1: Some Android-powered devices

The famous malware incidents, such as FluBot, Xenomorph, and Joker, demonstrate how malware can
access official app stores by evading detection mechanisms and cause significant security
harm. Several methods based on static and dynamic analysis and machine learning have been proposed
to analyse Android applications for protection [4]. Most of these works have been framed as malware
detection mechanisms, with the primary objective of distinguishing malicious applications from benign
ones. This work analysed existing Android app assessment research from a risk-oriented perspective
and reached a determination. The primary objective is to structure the risk assessment field, highlight
its limitations, and foster a clearer understanding of how risk is currently assessed in Android
applications.

2. Background

In risk analysis, different types of weaknesses are identified, such as permission misuse in the app,
misuse of legitimate platform APIs in the app, and privacy leakage in the app. From the perspective of
risk assessment, Table 1 lists the primary threats to the Android platform, their corresponding
mechanisms, the significant risk impact, and the entities that are impacted. The information
Applications use rather than their initial intention raises privacy concerns. Financial losses are mostly
caused by illegal transactions, stolen banking credentials, and the misuse of premium SMS services.
Phishing overlays and forged calls are pointing to user interface risks. Misuse of accessibility services,
abuse of background execution permissions, and abuse of inter-component communication are
examples of platform dangers.

Android apps can act as gateways for lateral movement and even for the integration of compromised
cloud services, posing organisational hazards in the corporate world. Risk-oriented techniques usually
produce a risk score, rating, or category that represents the likelihood and severity of potential harm
rather than a single output, such as a yes or no verdict. In situations where prioritisation and contextual
decision-making are necessary, such as app marketplace screening, enterprise mobile management, and
regulatory compliance, this distinction is very crucial. This work thus focuses on risk assessment models
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for Android apps that have been proposed in the literature utilising classical machine learning, deep
learning, and rule-based risk modelling strategies in addition to static, dynamic, and hybrid analysis
techniques.

Table 1: Risk-Oriented Taxonomy of Android Apps Threats

Threat Type Common Mechanisms Impact Affected Entities
Financial fraud Premium services abuse, billing | Monetary loss Users, banks
API exploitation
Privacy abuse Sensor misuse, background | Sensitive data End users and
tracking leakage platform providers
User interface | Overlay  attacks,  phishing | Credential End users
deception interfaces, fraudulent login | compromise
screens, clickjacking
Platform Misuse of accessibility services, | System integrity | Device ecosystem
capability abuse privilege escalation mechanisms | compromise
Enterprise- Credential harvesting and reuse, | Network and | Enterprises
oriented threats unauthorized service access organizational breach
Resource abuse Cryptomining, excessive | Device degradation | End users
background execution and energy drain
Communication Covert network channels, data | Information leakage | Users,
abuse exfiltration over encrypted traffic | and control loss organizations

3. Analysis Mechanisms for Android App Risk Assessment

The main analysis techniques used in current Android app risk assessment models are examined in this
section. Static, dynamic, and hybrid approaches can be used to broadly classify malicious activities,
each of which provides varying degrees of insight into application behaviour and related risk factors.
Further analysis approaches considered miscellaneous perspectives for protection.

3.1 Static Analysis-Based Risk Assessment

Static analysis is the most commonly used analysis approach, evaluating apps without executing them
and conducting app package, manifest, and source- or bytecode-level reviews to identify issues. Static
analysis is used to infer an app’s capabilities and intent, which can indicate potential risk even in the
absence of observed malicious behaviour that can be identified by running the app. The most popular
features of an app that can be identified in static analysis are static app permissions, declared
components, intent filters, app metadata, and API calls [5]. The app's requests for excessive or sensitive
permissions, such as those for messaging, accessibility services, overlays, or background execution, are
often seen as signs of increased platform, financial, or privacy risk. Additionally, the usage of crypto
APIs in apps, reflected calls, and dynamic class loading indicates malicious app activity, such as
attempts to hide behaviour or permit remote command execution. These concerns complicate the
identification of threats through static analysis [6]. The application's attack surface is also expanded by
manifest-level attributes, such as exported components lacking proper access controls, which are
commonly incorporated into risk scoring models [7]. Static analysis is a suitable method for early risk
screening in large-scale situations. Although static analysis-based methods produced satisfactory
results, they struggled to handle environment-specific logic, identify conditional execution paths, and
capture runtime behaviour. The reliability of static indicators can be seriously compromised by many
tactics, including obfuscation, reflection, and encrypted payloads.

3.2 Dynamic Analysis-Based Risk Assessment
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Dynamic analysis involves basically monitoring the app's behaviour by running it in a controlled
environment, such as a sandbox. Dynamic analysis identifies actual app usage by monitoring app actual
events, providing insights into risks that may occur during use. Dynamic analysis techniques mostly
concentrate on monitoring system calls, network usage, file system interaction, and user interface usage
[8]. Dynamic analysis is useful for the detection of data exfiltration attacks, inappropriate network
messaging, the usage of premium services, and Ul attacks such as the creation of phishing overlays.
Dynamic analysis is quite important in the analysis of logic bombs and trigger-style malicious code,
which behave harmlessly at the time of static analysis. Although dynamic analysis provides strong
positive points for risk analysis by observing the runtime behaviour of apps, it may face significant
challenges in risk assessment. Enhanced modern threats generally exhibit environment-awareness.
These threats alter behaviour in response to timing conditions, leading to missed external triggers or
sandbox behaviour detection [9]. The detection of delayed behaviours through dynamic analysis is
affected by limited execution time in the control environment and poor input coverage. So, dynamic
analysis observations may underestimate the true risk posed by an application when malicious actions
are designed to activate only under real-world conditions. Additionally, dynamic analysis is
inappropriate at large scale due to the time and resource constraints.

3.3 Hybrid Analysis-Based Risk Assessment

Many studies used hybrid analysis approaches that overcome complementary limitations of both static
and dynamic methodologies by combining features from both. The primary objective of hybrid analysis
is to enhance risk assessment by integrating actual usage information from dynamic analysis with the
scalability and completeness of static analysis. In hybrid risk assessment models, dynamic information
features, such as network activity, behavioural data, and user interface activity, are usually combined
with static features, permissions, APIs, and components [10]. By doing so, one can better cover threat
types to examine both latent and visible malicious activity. In particular, hybrid analysis is very helpful
for assessing platform capability abuse and enterprise threats, for which static information indicates
possible paths to abuse, while dynamic information indicates abused behaviours [11]. While hybrid
analysis offers improved expressiveness and robustness, it introduces additional complexity in feature
integration, system design, and computational overhead. The increased cost of analysis can limit
scalability, especially in large-scale app vetting scenarios.

From a standpoint, no single analysis technique provides complete visibility into all threat dimensions.
Table 2 compares different state-of-the-art approaches used in the literature for Android apps risk
assessment. Static analysis is very effective in identifying risks, particularly in the early phases, but
lacks behavioural evidence, and the dynamic analysis that supports it is susceptible to evasive malware
and mixed code coverage. The hybrid approach attempts to strike a middle ground between these two
and to offer a wide range of risk-related information about the apps, but it increases complexity. This
comparative viewpoint emphasises that the desired balance between scalability, depth of analysis, and
tolerance for uncertainty in risk estimate ultimately determines the choice of analytic technique.

Table 2: Overview and Comparison of Prior Android App Risk Assessment Approaches

References | Approach used Used Risk Outcomes
Features Evaluation

Arif et al. | Evaluated apps using static Permission | Classified apps | Increase awareness

(2021) [12] | analysis-based fuzzy analytical in four risk in granting any
hierarchy process risk assessment. levels. permission request.

Amin et al. | Hybrid analyses (static and Manifest, Vulnerabilities | Detect information

(2019) [13] | dynamic) used to detect source code | identified and | leaks and insecure
vulnerabilities in Android apps. network requests.
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based and | classified into
runtime three category.
Shrivastava | Static analysis is used to evaluate | Intent, Classified apps | Assisting how risky
and Kumar | efficiency of intents and Permission | in three | an app is before
(2019) [14] | permissions as a differentiating categories. installation.
feature.
Dhalaria An artificial neural network Permission | Apps classified | A graphical user
and model is developed to estimate into four risk | interface is
Gandotra class probabilities. factors. provided to
(2022) [15] evaluate risky apps.
Razak et al. | Applied Analytic Hierarchy Permission | Classified apps | Provides effective
(2019) [16] | Process as a decision factor with in four different | risk evaluation with
static analysis to calculate risk risk levels. increased user
value. awareness.
Sharma Identified risk factors using static | Permission | Classified apps | Quickly identified
and Gupta | analysis with usage of in four different | app's intention by
(2018) [17] | permissions in dataset samples. risk levels. permission requests
Deypir and | Introduced a risk estimation Instance Risk score | Effectively assign
Horri metric that uses previously known | based calculated for | high risk score to
(2018) [18] | malicious and non-malicious app apps. malware apps.
instances.
Xiao et al. | Combined collaborative filtering | Permission, | Risk value | Evaluates over
(2020) [19] | with static analysis to find the APl usage | identified for | privilege risk of
minimum consents needed for an apps. apps by examining
app. app’s additional
privileges.
Malleswari | Combined static permission Permission | Risk score | Increasing
et al. | analysis with different factors to calculated for | awareness about
(2017) [20] | estimate the risk score. apps. privacy risk.
Son et al. | A hybrid code analysis is used to | Static and | Classified into | Encouraging
(2022) [21] | determine whether app requests dynamic five different | evaluation results
more than required and whether code risk levels. with two different
collected data is used locally or features groups (users and
externally. crowd workers).
Yoo et al. | Introduced a visual analytics Permission | Risk score | Easily recognise
(2019) [22] | system that enables observation, assigned to | unintended security
mitigation, and assessment of the apps. activities using
effect of security risks. lifelog risk views.
Merlo and | Applied different machine Permission | Provides Provide reliable
Georgiu learning techniques for app risk reliable  risk | estimation using
(2017) [23] | analysis. index value multiple permission
usage patterns
Sanna et al. | Provided the approach for Static Risk score | Aid researchers and
(2024) [24] | checking the vulnerabilities of native code | assigned to | developers in
native code in apps. components | apps. mitigating
inspection immediate risks.
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Dahiya et | Static analysis based demeanour | Permission | Classified apps | Prior to installing an
al. [25] study of apps. in five different | app, determine the
risk levels. level of danger.

Existing studies typically use static, dynamic, or hybrid analysis techniques to extract security-relevant
indicators (Figure 2), which are then processed using rule-based or learning-based models to produce
risk scores, rankings, or categorical risk levels rather than binary decisions. In the current threat analysis
of Android applications, risk assessment methods primarily focus on single analysis parameters. To
obtain a comprehensive understanding of application risk profiles, an integrated model that combines
code-level vulnerabilities, authorisation requirements, runtime behaviour, application purpose,
reputation, and marketplace placement is required. This multifaceted assessment approach can guide
security analysts in making more informed decisions to protect users and promote innovation in the
Android ecosystem.

App Input Analysis Feature Extraction Risk Modeling Risk Output
APK file, App Extracted features Rule-based scoring, Multi-dimensional risk
metadata and [—>»Static/Dynamic/Hybrid—»| e —»  Machine/deep —> profile or Risk

o are risk indicators : .
description learning models scorellevel/ranking

Figure 2: General workflow of risk assessment that follow in the literature
4. Analysis of Feature-Level Risk Indicators

The literature review of this work has been completed, with a representative analysis that identifies
empirical observations discussed here. A sufficient number of AndroZoo [26] dataset app samples have
been analysed to examine how commonly used application features relate to application risk. Various
machine learning classifiers are used for classification with static features derived from requested
permissions and invoked API calls. A CatBoost [27] classifier yielded the best results among these. The
features that play the most important role in the classifier's decision-making are identified along with
their importance values. This analysis identifies features that consistently exhibit strong associations
with risk-related behaviour. The classifier's feature importance scores are used to rank permissions and
API calls by their contribution to the classification outcome, and the top 20 features in each category
are shown in Figures 3 and 4, which visualise their relative influence. To put these findings into context
from a risk assessment perspective, the risk impact of these highly influential features, which can affect
user devices, is shown in Table 3, taking into account privacy disclosure risks, financial fraud risks, and
platform capability risks. This table shows that misuse of these highly influential features can affect
users and devices in different ways, such as an application requesting read phone state permission
without a clear need, pointing to suspicious activity that can impact anonymity, and leading to data and
privacy leakage. An app whose main task is related to the calendar but that asks for storage and device
state permissions indicates suspicious behaviour.

Table 3: Security Implications of High-Importance Features

Feature Security Implications

“android_permission | Most legitimate app features do not require detailed phone state information.
_read phone state” | Misuse of this permission is commonly associated with loss of anonymity,
data leakage, tracking, and privacy-invasive behaviour.

“android_permission | Few modern apps genuinely need to send SMS automatically. If an app that
_send_sms” is not a core messaging or telecom app requests SEND SMS, it can be
associated with financial fraud, subscription abuse, spam propagation,
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account compromise, and delaying user awareness of outgoing messages
when combined with other permissions.

“android.telephony.T
elephonyManager.ge
tDeviceld”

It exposes non-resettable persistent identifiers that do not change across app
reinstalls or device reboots. From a security perspective, its misuse has
serious privacy implications.

“android.app.Activit
yManager.getRunnin
gTasks”

It allows an app to obtain information about tasks and activities currently or
recently running on the device. Misuse of this API is commonly associated
with privacy and monitoring concerns, user behaviour surveillance,
credential harvesting, targeted exploitation, and bypassing user awareness.

“android_permission
_receive_boot compl
eted”

Legitimate apps such as alarms or system utilities may need this permission.
If an app without a clear need to start at boot requests, it signals a risk of
stealthy execution, battery and resource abuse, early-stage surveillance,
combination attacks, and persistent behaviour.

“android_permission
_get tasks”

It allows an app to retrieve information about tasks and applications running
on the device. Misuse of this permission is commonly associated with user
activity tracking, privacy leakage, phishing attacks, silent surveillance,
adaptive malware behaviour, and credential-stealing attacks.

“java.io.FileNotFoun
dException.<init>"

It is not malicious by nature, but in behavioural analysis, it can act as a weak
signal of file probing or environment detection. It can be used to decide
whether to activate malicious behaviour and data access attempts.

“java.util.zip.ZipFile. | This API is common and legitimate, but in security analysis, its context of

<init>" use is important. It can be used to support hidden payload loading, evasion
techniques, dynamic code execution, dropper behaviour, and obfuscation of
malicious resources.

“android permission | It allows an app to write data to shared storage, which is accessible by other

_write_external_stor

2

age

apps or the user. If an app requests user-accessible files without a clear need
to store them, it can be associated with data leakage, malware persistence,
payload staging, tampering and corruption, and hiding malicious files.

“android.os.Parcel.w
riteLong”

This API is neutral by itself. It acts as a contextual feature that may indicate
hidden data exchange, component communication, privilege abuse, or
obfuscation of behaviour.

android_permission_read_phone_state
android_permission_send_sms
android_permission_receive_boot_completed
android_permission_get_tasks
android_permission_write_external_storage
android_permission_access_wifi_state
com_android_launcher_permission_install_shortcut
com_google_android_c2dm_permission_receive
android_permission_system_alert_window

Feature

android_permission_access_coarse_location
android_permission_vibrate

android_permission_wake_lock
android_permission_access_fine_location

android_permission_read_contacts
android_permission_access_network_state
android_permission_call_phone
android_permission_read_logs
android_permission_get_accounts
android_permission_set_wallpaper
android_permission_read_sms

2 4 6 8 10 12
Importance

Figure 3: Most Influential Permissions for Classification
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android.telephony.TelephonyManager.getDeviceld
android.app.ActivityManager.getRunningTasks
java.io.FileNotFoundException.<init>
java.util.zip.ZipFile.<init>
android.os.Parcel.writeLong
android.os.Parcel.enforcelnterface
java.net.Proxy$Type . HTTP
android.telephony.SmsManager.sendTextMessage
java.lang.Runtime.exec
android.telephony.TelephonyManager.getSubscriberld

Feature

android.support.v4.util.LongSparseArray.idealLongArraySize
android.support.v4.util.LongSparseArray.idealByteArraySize
android.telephony.SmsManager.getDefault
android.telephony.TelephonyManager.getSimState
java.io.BufferedReader.close
javax.xml.parsers.SAXParserFactory.newSAXParser
java.lang.Comparable.compareTo
android.telephony.TelephonyManager.getLinelNumber
java.io.EOFException.<init>

java.net.HttpURLConnection.setConnectTimeout

0 1 2 3 4
Importance

Figure 4: Most Influential API Calls for Classification

5. Future work

The analysis indicates that, though static, dynamic, and hybrid approaches remain very popular, each
has its own trade-offs regarding scalability, behaviour coverage, and resistance to evasion attacks.
Learning models, such as machine learning and deep learning, have been shown to improve the ability
to combine indicators into risk scores or rankings, but they rely on datasets that may lack temporal
coverage and risk labelling. Existing solutions struggle to model the behaviour of delayed, context-
dependent actions, especially those related to UI deception, logic bombs, and the misuse of legitimate
services for malicious purposes. Moreover, the solution, which impairs transparency of explanations,
makes it difficult to implement within decision-making mechanisms involving consumers,
organisations, or regulators. Furthermore, no standardised benchmark or evaluation metric is defined in
risk assessments. In the future, the research should aim to develop context-aware, explainable risk
assessment systems that articulate user, device, and deployment contexts. Lightweight risk analysis
pipelines are needed to enable large-scale app risk scanning. The longitudinal data sources and
standardised risk definition will enable the research to evaluate the study in the future. Finally, building
bridges between the existing mobile and cloud security ecosystems and the Android app risk evaluation
environment may be a good way to address the new cross-platform threats.

6. Conclusions

This paper conducted an appraisal of existing approaches to Android app risk evaluation models within
a risk-based taxonomy, as defined by the existing literature. In this, it showcased how contemporary
research has moved from simple binary malicious-code detection to a much more complex
understanding of application-related risks, taking into account privacy abuse, financial threats,
deceptive user interface, platform abuse, and business impact. This paper is able to point out the efforts
put forth by existing work, aside from malware identification, towards risk representation, their
strength, as well as existing challenges.
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