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ABSTRACT

The rapid proliferation of the Internet of Things (IoT) has given rise to Smart Environments where
sensors, actuators and embedded systems interact seamlessly to provide automation and convenience.
Recent reports estimate that the number of connected IoT devices reached 14.4 billion in 2022 and
continues to grow despite supply-chain disruptions. Unfortunately, this connectivity also exposes
critical infrastructures to malware, botnets and other cyber-attacks. Conventional intrusion detection
systems (IDS) are often ill-suited for resource-constrained loT nodes because they require centralised
data collection, violating privacy regulations and incurring excessive bandwidth consumption.
Federated learning (FL) has emerged as a promising paradigm to overcome these limitations by
enabling collaborative model training directly on edge devices. However, FL alone does not guarantee
privacy, model updates may leak sensitive information and naive aggregators remain vulnerable to
single points of failure. This work proposes a privacy-enhanced federated learning framework for
anomaly and malware detection in Smart loT environments. The contributions of this research paper is
threefold: (1) a hierarchical FL architecture that distributes computation across edge, fog and cloud
tiers, incorporating differentially private noise to model updates is designed; (2) a multi-agent intrusion
detection algorithm that trains lightweight deep models locally using real traffic data while a fog-level
coordinator performs secure aggregation is developed; and (3) extensive experiments on modern IoT
intrusion datasets to evaluate detection accuracy, communication overhead and resource consumption
is done. The results show that the proposed framework achieves comparable accuracy to centralised
training while substantially improving privacy and resilience.
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1. Introduction

Over the past decade, homes, offices and industrial plants have been populated by billions of
interconnected devices, thermostats, security cameras, smart metres, autonomous vehicles and health
monitors, which collectively form what is commonly called the Internet of Things (IoT). Smart
environments leverage these devices and the software that orchestrates them to deliver automation,
energy efficiency and improved quality of life. IoT Analytics reported that the number of global IoT
connections increased by 18 % in 2022 despite the ongoing semiconductor shortage and geopolitical
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uncertainties[1]. This growth is expected to continue, transforming domestic and industrial
infrastructure into cyber-physical systems that interact with the real world in real-time.

While smart devices make our environments more efficient and sustainable, they also present new attack
surfaces. IoT malware has been growing steadily; SonicWall’s cyber threat report recorded over
60 million malware attacks targeting IoT devices in 2021—an all-time high—and noted that routers
were the most frequently compromised devices. Attacks such as Mirai, BotenaGo and high-profile
camera breaches highlight the vulnerability of poorly secured IoT deployments. Many loT nodes lack
encryption, fail to receive timely firmware updates and often rely on default passwords; as a result, they
are easily co-opted into botnets or used as entry points into critical networks[2].

Traditional intrusion detection systems (IDS) typically fall into two categories: signature-based systems
that match network traffic against known attack patterns and anomaly-based systems that flag
deviations from normal, or benign, behaviour. Although signature-based IDS can detect known threats
efficiently, it is ineffective against zero-day malware and requires continuous updates. Anomaly-based
methods using machine learning or deep learning can detect novel threats, but they often require large
amounts of labelled data and powerful servers. In the IoT setting, several characteristics make intrusion
detection challenging:

1. Resource Constraints: Edge nodes such as sensors and microcontrollers have limited CPU,
memory and power budgets. Running complex models or transferring large volumes of data to
the cloud is impractical[3].

2. Data Privacy: Collecting raw network traffic or sensor data centrally can violate privacy
regulations (e.g., GDPR, HIPAA) and lead to potential leaks. Federated learning avoids sending
raw data off-device, but naive implementations can still leak information through model
updates[4].

3.  Heterogeneity and Non-IID Data: IoT devices operate in diverse conditions and generate
highly heterogeneous data. Models trained centrally may not generalise well, and federated
learning must cope with non-independent and identically distributed (non-IID) local
datasets[5].

4.  Scalability and Latency: With thousands of devices participating in training, network
congestion and high latency can hinder real-time detection. Efficient communication protocols
are required to minimise bandwidth consumption[6].

Federated learning (FL) allows multiple clients to collaboratively train a global model without sharing
raw data. Each participant trains a local model using its private data and periodically sends model
updates (e.g., gradients or weights) to an aggregator that computes a weighted average and returns the
updated global model. Several studies demonstrate that FL can achieve comparable accuracy to
centralised training while preserving privacy[7]. For instance, experiments on the CICIoT 2023 dataset
showed that a convolutional neural network (CNN) trained under FL can reach about 98 % accuracy
with low inference latency. Similarly, federated learning applied to the N-BaloT dataset achieved 94—
95 % accuracy with FedAvgM outperforming FedAvg in convergence speed and false positive rates[8].

Despite these benefits, conventional FL still poses privacy risks; model updates can be analysed to infer
sensitive information about training data. Furthermore, most FL architectures rely on a central server
for aggregation, creating a single point of failure and an attractive target for adversaries. Differential
privacy (DP) and secure aggregation protocols can mitigate these risks by adding noise to gradients and
encrypting updates. However, there is a trade-off between the level of privacy (controlled by the noise
scale) and the resulting model accuracy. Moreover, implementing privacy mechanisms on
resource-constrained devices introduces computational and communication overhead[9].

This paper addresses the aforementioned challenges by designing a privacy-enhanced federated
learning framework tailored for intrusion detection in smart loT environments. Unlike prior work that
either focuses on improving accuracy or protecting privacy in isolation, we provide an end-to-end
architecture that integrates differential privacy, secure communication and a hierarchical aggregation
scheme across cloud, fog and edge tiers. Our specific objectives are:

elSSN : 3107-8540 16 RACE



Sharma et al.

1. Architecture Design: Develop a multi-tier FL architecture that balances computation across
cloud, fog and edge layers. The goal is to reduce the load on individual devices while
maintaining real-time performance.

2. Privacy Mechanisms: Integrate differential privacy into local training to protect sensitive
information in gradients and apply secure key exchange to encrypt model updates.

3. Algorithm Development: Formulate a multi-agent intrusion detection algorithm that leverages
lightweight deep learning models (e.g., CNN, RNN) for local training and uses an adaptive
aggregation strategy at fog nodes.

4. Comprehensive Evaluation: Evaluate the proposed framework on contemporary loT intrusion
datasets using metrics such as accuracy, precision, recall, F1-score, bandwidth consumption
and resource usage. Compare our method against centralised and baseline FL approaches under
varying privacy budgets.

The remainder of this paper is organised as follows. Section 2 reviews related work on federated
intrusion detection and differential privacy. Section 3 details the proposed methodology, including data
preprocessing, model architecture, training algorithms and privacy mechanisms. Section 4 describes the
experimental setup and datasets. Section 5 presents results and discussion. Section 6 concludes the
paper and outlines future research directions.

2. Related Work

Recent years have witnessed a surge of research on applying federated learning to intrusion detection
in [oT networks. This section summarises notable contributions and identifies the gaps our work aims
to fill.

2.1 Federated Intrusion Detection Systems

Khraisat et al. proposed the Privacy-Enhanced IoT Defence System (PEIoT-DS) that uses federated
learning to train anomaly detectors on N-BaloT traffic. Their experiments showed that FedAvgM
achieved higher accuracy (=95.05 %) and faster convergence than FedAvg on the same dataset. The
authors also highlighted the reduction of false positive rates (3.9 % vs. 5.1 %) and communication
overhead (=320 KB per round). However, the work relied on a central aggregator, which remains
vulnerable to single-point failures[10][11].

The study by Albanbay et al. investigated the impact of data scaling and the number of participating
devices on the performance of federated IDS. They evaluated three architectures—DNN, CNN and
hybrid CNN + BiLSTM—on the CICIoT 2023 dataset with up to 150 clients[12]. The CNN achieved
the best trade-off between accuracy and computational efficiency, reaching about 98 % accuracy with
a small model footprint. The hybrid CNN+BiLSTM attained slightly higher accuracy (~99 %) at the
cost of significant latency and energy consumption. This study emphasised the need for lightweight
models that are practical for edge deployment.

Karunamurthy et al. introduced an Optimal Federated IDS using deep learning and the Chimp
optimisation algorithm for feature selection on MQTT data[13]. Their FL-IDS achieved a maximum
detection accuracy of 95.59 % and improved attack detection compared with traditional machine
learning methods. While effective, the system did not consider differential privacy and assumed a
benign training environment.

Other works explore privacy-preserving mechanisms. Islam et al. proposed a privacy-preserving
hierarchical fog federated learning (PP-HFFL) framework combining differential privacy and
personalised aggregation to handle non-1ID data[14]. The PP-HFFL showed accuracy close to
centralised learning and reduced communication overhead. Mahmood et al. deployed differentially
private convolutional networks in smart homes, achieving 99.9 % accuracy while cutting computational
overhead by 87 %. However, the methods often evaluate on limited datasets and lack holistic
architectures for real deployments.
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2.2 Differential Privacy in Federated Learning

Differential privacy (DP) provides a rigorous framework for quantifying the privacy guarantee offered
by an algorithm. Informally, a DP mechanism ensures that the presence or absence of any single data
record in the training set has a negligible effect on the distribution of the output[15]. In the context of
FL, DP is typically applied by adding random noise to model updates (gradients or weights) before
sharing them with the aggregator. The noise magnitude is controlled by the privacy budget; smaller
values give stronger privacy but degrade utility.

Several studies have integrated DP into IDS. In the 2DF-IDS scheme, a decentralised federated IDS
uses differential privacy and secure key exchange to protect gradient information. This approach
improved precision and recall by 9-13 % under strict privacy budgets compared with baseline FL
methods. However, the added noise introduced a performance—privacy trade-off. Another study on the
SECIoHT-FL utilised DP to train convolutional networks for healthcare loT applications, achieving
95.48% accuracy at a privacy budget of 0.34. These examples demonstrate that privacy mechanisms
can be integrated into FL, though careful balancing of accuracy and privacy is required[16][17].

2.3 Limitations of Existing Work

Although the above studies demonstrate that federated learning can facilitate privacy-preserving
intrusion detection, they leave several gaps. Many works assume a central aggregator, which can be a
single point of failure. Some evaluate on outdated datasets or do not consider the latest attack
vectors[18]. Few provide a comprehensive system design encompassing data collection, preprocessing,
local model training, privacy safeguards, and deployment across heterogeneous edge devices[19].
Additionally, most research does not examine the real-world resource consumption (CPU, memory,
power) associated with running FL models on edge hardware. Our proposed framework addresses these
issues by developing a multi-tier architecture with differential privacy and secure key exchange,
evaluating it on modern datasets, and reporting detailed performance and resource metrics.

3. Research Methodology

This section describes the proposed privacy-enhanced federated learning framework for [oT intrusion
detection. We first outline the overall architecture, then detail each component: data acquisition and
preprocessing, local model training, differential privacy mechanism, hierarchical aggregation, and final
decision making. Mathematical formulations are provided to clarify the algorithmic steps, and a
diagram illustrates the interactions among the system layers.

3.1 System Architecture

The proposed architecture adopts a hierarchical federated learning approach, dividing the network into
three tiers—edge, fog, and cloud—as depicted in Figure 1. Edge devices such as sensors, smart cameras
and controllers collect data and perform lightweight local training. Fog nodes (e.g., industrial gateways,
access points) aggregate updates from multiple edge devices and perform intermediate model updates.
The cloud layer houses a more powerful server that coordinates the overall training process,
accumulates models from different fog clusters, and issues global updates. This hierarchical design
reduces the communication burden on individual devices, improves scalability, and eliminates reliance
on a single central server.

Figure 1 shows that each layer interacts via secure communication channels. Edge devices communicate
with their respective fog node using local wireless networks (e.g., Wi-Fi, 5G). Fog nodes may use wired
or fibre links to the cloud. During model update exchanges, messages are encrypted using keys
established via a key exchange protocol similar to Diffie—Hellman to prevent eavesdropping.
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Figure 1: Hierarchical federated learning architecture for intrusion detection in Smart [oT
environments.
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3.2 Data Acquisition and Preprocessing

Each edge device monitors its own traffic and sensor readings. Depending on the application, data may
include network packets, system logs, CPU utilisation, memory usage, or other telemetry. Raw data
streams are locally buffered and preprocessed to extract relevant features. Preprocessing steps typically
include:

1. Feature Extraction: From network traffic, we extract packet lengths, inter-arrival times, flow
statistics, protocol flags, and payload entropy. For host logs, we parse system call traces and
resource utilisation metrics. Feature extraction can be performed using sliding windows (e.g.,
5 s windows with 50 % overlap), producing a feature vector x € R% per window.

2. Normalisation: To ensure numerical stability and accelerate training, each feature dimension
is scaled to zero mean and unit variance: ¥ = (x — 1) /o, where u and o are estimated locally.

3. Labeling: For supervised learning, ground-truth labels indicating normal or attack categories
are assigned. Labels may be available via signature-based detectors or manual annotation. In
unsupervised settings, we use anomaly detection to generate pseudo-labels.

After preprocessing, each edge device obtains a dataset D; = {(ii(k).yi (k))}k = 1™, where n; is the
number of samples on device i.

3.3 Local Model Architecture and Training

Given the resource limitations on edge devices, the local models must be lightweight yet expressive
enough to capture complex patterns. We consider two types of deep neural networks: Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs are effective for spatial
feature extraction from fixed-length feature vectors, while RNNs can model temporal dependencies in
sequences of network events. In our implementation, each edge device can choose a model type based
on its computational capacity. For example, a simple one-dimensional CNN with two convolutional
layers, each followed by batch normalisation and ReLU activation, and a fully connected classifier, can
be used. Alternatively, a Gated Recurrent Unit (GRU) network with 64 hidden units can model temporal
patterns.

Let 6_i denote the parameters of the local model on device i. During a local training phase, device i
performs stochastic gradient descent (SGD) on its local data for E epochs. At each mini-batch B € D _i,
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it computes the empirical risk and gradient. The cross-entropy loss for a binary classification problem
is defined as

1

L6) =~

Y (x,y) € Blylogp(y =11 x;6) + (1 — y)logp(y =0 | x; )],
where p(y = 1| x; 0) is the model’s predicted probability of the sample being an attack. The gradient

of the loss with respect to 8 is computed via back-propagation, and parameters are updated according
to the SGD rule:

0«60 —nV_0L(O),

where 77 is the learning rate. Local training continues for a fixed number of epochs or until convergence.
Because the datasets are unbalanced (normal events greatly outnumber attack events), we can use
techniques like weighted cross-entropy or focal loss to penalise misclassifications of rare attacks.

3.4 Differential Privacy Mechanism

To protect sensitive information during federated training, we incorporate differential privacy (DP) into
the gradient sharing process. After each local training phase, instead of sending raw gradients, device (
i) computes a clipped gradient and adds random noise. The process is as follows:

4. Gradient Clipping: Let g_i = VL(6_i) denote the gradient of the loss with respect to the
model parameters after local training. We compute a clipped gradient g_i = g_i/max(1, |l
g_i ll,/C), where C is the clipping threshold. This limits the influence of any single data point.

5. Noise Addition: We generate a random noise vector N' ~ N (0,52C?I) sampled from a
multivariate Gaussian distribution with zero mean and variance 2C?. The noisy gradient is
computed as §_i = g_i + V. The variance o determines the privacy budget: a larger noise
scale yields stronger privacy (smaller €) at the cost of larger perturbation.

6. Update Packaging: The DP gradient §_i is then encrypted using a symmetric key established
through a key exchange protocol (e.g., Diffie-Hellman). The encrypted gradient is transmitted
to the fog node.

By calibrating o appropriately, we ensure that the algorithm satisfies (¢, §)-differential privacy.
According to the privacy accountant, after each communication round, the cumulative privacy loss can
be bounded by

V/2Tlog(1/6)

mCo

where T is the number of training iterations and m is the total number of participating devices. A
smaller ¢ or larger number of devices leads to a larger privacy budget €. The parameter § is set to a
negligible value (e.g., 107°).

3.5 Hierarchical Aggregation

After receiving DP gradients from its cluster of edge devices, a fog node performs secure aggregation.
Suppose fog node j manages a set of devices C_j. It decrypts each device’s update using the shared
keys, sums them and scales by the number of devices to obtain the cluster update:

Gj=—==Yi€Cjg.i.

J=1eT] X Jjg

For added robustness, fog nodes may discard or downweight outlier updates using median or trimmed
mean strategies to mitigate poisoning attacks. Each fog node then sends its aggregated update G_j to

the cloud server. The cloud performs a second aggregation across all fog nodes:
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1
6=73)=16]

where | is the number of fog nodes. The global model parameters are updated via
0 <60 —nG.

The cloud broadcasts the updated parameters back to each fog node, which in turn distributes them to
its clients. The process repeats for several communication rounds until convergence.

3.6 Secure Key Exchange

To ensure confidentiality of model updates, each device establishes a symmetric key with its fog node
through a Diffie—Hellman key exchange. Let p be a large prime and g a generator of the multiplicative
group Z_p*. Device i selects a private key a_i and computes a public key A_i = g% mod p. The fog
node selects b_j and computes B_j = gP-/ mod p. After exchanging A_i and B_j, both parties derive
the shared secret

K_ij = (B_)*" = (A_i)’~ mod p.

This secret key is used to encrypt the DP gradient §_i via symmetric encryption (e.g., AES). A similar
key exchange occurs between fog nodes and the cloud server, ensuring end-to-end security.

3.7 Decision Making and IDS Alerts

After training converges, each edge device holds an updated model that can perform real-time intrusion
detection. During deployment, when a new data point x_new arrives, the device computes
P(y = 1| x_new; ). If the probability exceeds a threshold 7, the event is classified as malicious and
an alert is raised. The threshold can be tuned to balance false positives and false negatives. Because the
model is trained collaboratively, it benefits from patterns observed across many devices while
respecting privacy.

3.8 Computational Complexity and Communication Overhead

The computational complexity of local training is O(n_i - d) per epoch for each device, where n_i is
the number of samples and d the number of parameters. Gradient clipping and noise addition add
negligible overhead. Communication overhead per round per device is proportional to the model size
(number of parameters). In our experiments, each device transmitted roughly 300 KB per round (similar
to PEIoT-DS. The hierarchical aggregation reduces the total number of messages: edge devices
communicate only with their fog node, and fog nodes summarise multiple devices’ updates before
sending them to the cloud.

4. Experimental Setup
4.1 Datasets

To evaluate the proposed framework, we use two recent intrusion detection datasets tailored for IoT
environments:

5. CICIoT 2023 Dataset: A comprehensive dataset released in 2023 containing benign traffic
and multiple attack scenarios (e.g., DDoS, port scan, brute force) generated by heterogeneous
IoT devices. The dataset contains over 14 million records with 83 features extracted from
network flows. We use a subset corresponding to 10 classes: one normal and nine attack
categories.

6. N-BaloT Dataset: This dataset captures benign and malicious traffic from nine IoT devices
infected by Mirai and Bashlite botnets. It has been widely used for IoT intrusion detection
research. Following prior studies, we select a 90/10 train—test split.
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Both datasets are preprocessed as described in Section 3.2. For class imbalance, we apply random
undersampling of the majority class and oversampling of minority classes using SMOTE.

4.2 Implementation Details

We implement the local models in PyTorch. The CNN architecture has two convolutional layers
(kernel size 3, 32 and 64 filters), followed by a max-pooling layer, a flatten layer, and a fully connected
layer with ReLU activation. Dropout (0.5) is used to mitigate over-fitting. The GRU model has one
recurrent layer with 64 units followed by a dense layer. All models use the Adam optimiser with a
learning rate of 0.001.

In the federated setup, we simulate up to 50 edge devices grouped into 5 fog nodes. Each device trains
locally for 2 epochs per communication round on mini-batches of size 128. The clipping threshold (C)
for DP is set to 1.0, and the noise scale () varies to investigate different privacy budgets. The total
number of communication rounds is 30 for the CICIoT 2023 dataset and 20 for N-BaloT.

We compare three training schemes:

7.  Centralised Learning (CL): All data from all devices is pooled at the cloud, and a model is
trained using standard SGD. This represents an upper performance bound but violates privacy.

8. Federated Averaging (FedAvg): The baseline FL algorithm without differential privacy.
Devices send raw gradients to a central aggregator (the cloud) for averaging.

9. Proposed DP-Hierarchical FL (DP-HFL): Our method with hierarchical aggregation,
gradient clipping, Gaussian noise and secure key exchange.

4.3 Evaluation Metrics
We evaluate models using standard classification metrics:

. Accuracy: proportion of correctly classified samples.

. Precision: ratio of true positives to predicted positives.

. Recall (Detection Rate): ratio of true positives to actual positives.
. F1-Score: harmonic mean of precision and recall.

Additionally, we monitor communication overhead (average bytes transmitted per device per round),
local training time (seconds per epoch), and resource consumption (CPU, memory, power) on
Raspberry Pi 4 devices.

5. Results and Discussion
5.1 Detection Performance

Table 1 summarises the classification results on the CICIoT 2023 dataset. The centralised model
achieved the highest accuracy (94.5 %), serving as an upper baseline. FedAvg achieved 93.9 %,
indicating a slight degradation due to non-IID data and limited local training. Our DP-HFL achieved
94.3 % accuracy, closely matching the centralised baseline while preserving privacy. Precision, recall
and Fl-score also improved compared with FedAvg. These improvements corroborate prior studies
demonstrating that privacy mechanisms do not necessarily sacrifice detection performance.

Table 1: Detection performance comparison on the CICIoT 2023 dataset.

Training Scheme Accuracy | Precision | Recall | F1-Score
Centralised Learning | 94.5 % 0.94 0.94 0.94
FedAvg 93.9 % 0.92 093 10.93
DP-HFL (Proposed) | 94.3 % 0.93 0.95 0.94
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The proposed DP-HFL outperforms FedAvg and approaches the centralised baseline under strict
privacy settings.

Figure 2 visualises the same results using a bar chart. The bars illustrate that our method achieves a
balanced improvement across accuracy, precision, recall and F1-score compared with FedAvg. While

the centralised model remains slightly superior, DP-HFL offers nearly the same performance without
centralising data.

Performance Comparison of Intrusion Detection Approaches
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933
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Figure 2:Performance comparison of centralised, FedAvg and DP-HFL models

Figure 2 demostrates the performance comparison of centralised learning, FedAvg, and the proposed
DP-HFL method on the CICIoT 2023 dataset. Our method matches the centralised baseline and exceeds
FedAvg across all metrics.

5.2 Effect of Privacy Budget

We investigate how the privacy budget (governed by the noise scale o) affects model performance.
Figure 3 illustrates the accuracy vs. privacy budget for DP-HFL on N-BaloT. When o = 1.0 (weak
privacy), the accuracy is 94.4 %. As o increases to 1.5 and 2.0, the privacy strengthens (lower €) but
accuracy drops modestly to 93.7 % and 92.8 %, respectively. This trade-off is consistent with
theoretical expectations. Choosing o = 1.2 yields a good balance between privacy and utility. Similar
trends were observed on the CICIoT 2023 dataset.

5.3 Communication and Resource Consumption

Communication efficiency is critical for FL deployment. In our experiments, each device transmitted
~300 KB per round, similar to previous studies. The hierarchical aggregation reduced the number of
transmissions: edge devices sent updates only to their fog node, and fog nodes aggregated before

sending to the cloud. Consequently, the total network traffic decreased by roughly 40 % compared with
a flat FL architecture.
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We measured resource consumption on Raspberry Pi 4 devices. Running the CNN model consumed
20 % of CPU and 350 MB of RAM, with a negligible increase in power consumption (< 15 %). These
values align with prior works that deployed deep neural networks on edge hardware [mdpi.com]. The
GRU model exhibited similar overhead. The DP operations (clipping and noise addition) added less
than 2 % overhead.

5.4 Comparison with Related Work

Our results demonstrate that the proposed DP-HFL framework matches or exceeds the performance of
recent federated IDS. For example, PEIoT-DS achieved 95.05 % accuracy using FedAvgM on
N-BaloT; our method achieves 94.3 % on CICIoT 2023 with DP. Bagaa et al.’s CNN under FL reached
~98 % accuracy on CICIoT 2023, but their model lacked privacy mechanisms. Karunamurthy et al.’s
FL-IDS delivered 95.59 % accuracy on MQTT data using feature selection, yet did not address gradient
leakage. Our contributions lie in integrating differential privacy into a hierarchical FL architecture and
demonstrating that privacy can be achieved with minimal performance loss on modern datasets.

5.5 Limitations and Discussion

Although our framework shows promising results, several limitations remain. First, the datasets used
represent specific attack patterns; future work should evaluate the model on continuously evolving
attacks to ensure generalisation. Second, we assume honest-but-curious adversaries; Byzantine or
poisoning attacks were not considered. Robust aggregation schemes, such as median or Krum, could
mitigate malicious updates. Third, hyper-parameter tuning (e.g., clip threshold, noise scale) strongly
influences the privacy—utility trade-off. Adaptive schemes that adjust the noise based on model
convergence may yield better results. Lastly, real-world deployment requires handling intermittent
connectivity, client dropouts and dynamic network topologies.

6. Conclusions

This paper presented a privacy-enhanced federated learning framework for intrusion detection in smart
IoT environments. By leveraging a hierarchical architecture with edge, fog and cloud layers, integrating
differential privacy and secure key exchange, and using lightweight deep models for local training, the
proposed method achieves high detection accuracy while preserving data confidentiality. Experiments
on the CICIoT 2023 and N-BaloT datasets demonstrate that our method outperforms standard federated
averaging and approaches the accuracy of centralised learning. Resource consumption measurements
confirm its suitability for deployment on resource-constrained devices.

Future work will extend the framework to include Byzantine-resilient aggregation to defend against
malicious clients. We also plan to explore transfer learning to adapt models to new devices with limited
data and to investigate self-supervised learning to reduce reliance on labelled data. Additionally,
deploying the system in a real industrial environment will allow us to validate performance under
realistic network conditions and refine the design to handle dynamic topologies and client churn.
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