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ABSTRACT 

The rapid proliferation of the Internet of Things (IoT) has given rise to Smart Environments where 

sensors, actuators and embedded systems interact seamlessly to provide automation and convenience. 

Recent reports estimate that the number of connected IoT devices reached 14.4 billion in 2022 and 

continues to grow despite supply‑chain disruptions. Unfortunately, this connectivity also exposes 

critical infrastructures to malware, botnets and other cyber‑attacks. Conventional intrusion detection 

systems (IDS) are often ill‑suited for resource‑constrained IoT nodes because they require centralised 

data collection, violating privacy regulations and incurring excessive bandwidth consumption. 

Federated learning (FL) has emerged as a promising paradigm to overcome these limitations by 

enabling collaborative model training directly on edge devices. However, FL alone does not guarantee 

privacy, model updates may leak sensitive information and naive aggregators remain vulnerable to 

single points of failure. This work proposes a privacy‑enhanced federated learning framework for 

anomaly and malware detection in Smart IoT environments. The contributions of this research paper is 

threefold: (1)  a hierarchical FL architecture that distributes computation across edge, fog and cloud 

tiers, incorporating differentially private noise to model updates is designed; (2)  a multi‑agent intrusion 

detection algorithm that trains lightweight deep models locally using real traffic data while a fog‑level 

coordinator performs secure aggregation is developed; and (3)  extensive experiments on modern IoT 

intrusion datasets to evaluate detection accuracy, communication overhead and resource consumption 

is done. The results show that the proposed framework achieves comparable accuracy to centralised 

training while substantially improving privacy and resilience. 

 

Keywords: Federated Learning, IDS, IoT Security, Smart Devices, Privacy preserving. 

1. Introduction 

Over the past decade, homes, offices and industrial plants have been populated by billions of 

interconnected devices, thermostats, security cameras, smart metres, autonomous vehicles and health 

monitors, which collectively form what is commonly called the Internet of Things (IoT). Smart 

environments leverage these devices and the software that orchestrates them to deliver automation, 

energy efficiency and improved quality of life. IoT Analytics reported that the number of global IoT 

connections increased by 18 % in 2022 despite the ongoing semiconductor shortage and geopolitical 
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uncertainties[1]. This growth is expected to continue, transforming domestic and industrial 

infrastructure into cyber-physical systems that interact with the real world in real-time. 

While smart devices make our environments more efficient and sustainable, they also present new attack 

surfaces. IoT malware has been growing steadily; SonicWall’s cyber threat report recorded over 

60 million malware attacks targeting IoT devices in 2021—an all‑time high—and noted that routers 

were the most frequently compromised devices. Attacks such as Mirai, BotenaGo and high‑profile 

camera breaches highlight the vulnerability of poorly secured IoT deployments. Many IoT nodes lack 

encryption, fail to receive timely firmware updates and often rely on default passwords; as a result, they 

are easily co‑opted into botnets or used as entry points into critical networks[2]. 

Traditional intrusion detection systems (IDS) typically fall into two categories: signature-based systems 

that match network traffic against known attack patterns and anomaly-based systems that flag 

deviations from normal, or benign, behaviour. Although signature‑based IDS can detect known threats 

efficiently, it is ineffective against zero‑day malware and requires continuous updates. Anomaly-based 

methods using machine learning or deep learning can detect novel threats, but they often require large 

amounts of labelled data and powerful servers. In the IoT setting, several characteristics make intrusion 

detection challenging: 

1. Resource Constraints: Edge nodes such as sensors and microcontrollers have limited CPU, 

memory and power budgets. Running complex models or transferring large volumes of data to 

the cloud is impractical[3]. 

2. Data Privacy: Collecting raw network traffic or sensor data centrally can violate privacy 

regulations (e.g., GDPR, HIPAA) and lead to potential leaks. Federated learning avoids sending 

raw data off-device, but naive implementations can still leak information through model 

updates[4]. 

3. Heterogeneity and Non‑IID Data: IoT devices operate in diverse conditions and generate 

highly heterogeneous data. Models trained centrally may not generalise well, and federated 

learning must cope with non‑independent and identically distributed (non‑IID) local 

datasets[5]. 

4. Scalability and Latency: With thousands of devices participating in training, network 

congestion and high latency can hinder real‑time detection. Efficient communication protocols 

are required to minimise bandwidth consumption[6]. 

Federated learning (FL) allows multiple clients to collaboratively train a global model without sharing 

raw data. Each participant trains a local model using its private data and periodically sends model 

updates (e.g., gradients or weights) to an aggregator that computes a weighted average and returns the 

updated global model. Several studies demonstrate that FL can achieve comparable accuracy to 

centralised training while preserving privacy[7]. For instance, experiments on the CICIoT 2023 dataset 

showed that a convolutional neural network (CNN) trained under FL can reach about 98 % accuracy 

with low inference latency. Similarly, federated learning applied to the N‑BaIoT dataset achieved 94–

95 % accuracy with FedAvgM outperforming FedAvg in convergence speed and false positive rates[8]. 

Despite these benefits, conventional FL still poses privacy risks; model updates can be analysed to infer 

sensitive information about training data. Furthermore, most FL architectures rely on a central server 

for aggregation, creating a single point of failure and an attractive target for adversaries. Differential 

privacy (DP) and secure aggregation protocols can mitigate these risks by adding noise to gradients and 

encrypting updates. However, there is a trade‑off between the level of privacy (controlled by the noise 

scale) and the resulting model accuracy. Moreover, implementing privacy mechanisms on 

resource‑constrained devices introduces computational and communication overhead[9]. 

This paper addresses the aforementioned challenges by designing a privacy‑enhanced federated 

learning framework tailored for intrusion detection in smart IoT environments. Unlike prior work that 

either focuses on improving accuracy or protecting privacy in isolation, we provide an end‑to‑end 

architecture that integrates differential privacy, secure communication and a hierarchical aggregation 

scheme across cloud, fog and edge tiers. Our specific objectives are: 



Sharma et al. 

 

 

eISSN : 3107-8540 17 RACE  

 

1. Architecture Design: Develop a multi‑tier FL architecture that balances computation across 

cloud, fog and edge layers. The goal is to reduce the load on individual devices while 

maintaining real‑time performance. 

2. Privacy Mechanisms: Integrate differential privacy into local training to protect sensitive 

information in gradients and apply secure key exchange to encrypt model updates. 

3. Algorithm Development: Formulate a multi‑agent intrusion detection algorithm that leverages 

lightweight deep learning models (e.g., CNN, RNN) for local training and uses an adaptive 

aggregation strategy at fog nodes. 

4. Comprehensive Evaluation: Evaluate the proposed framework on contemporary IoT intrusion 

datasets using metrics such as accuracy, precision, recall, F1‑score, bandwidth consumption 

and resource usage. Compare our method against centralised and baseline FL approaches under 

varying privacy budgets. 

The remainder of this paper is organised as follows. Section 2 reviews related work on federated 

intrusion detection and differential privacy. Section 3 details the proposed methodology, including data 

preprocessing, model architecture, training algorithms and privacy mechanisms. Section 4 describes the 

experimental setup and datasets. Section 5 presents results and discussion. Section 6 concludes the 

paper and outlines future research directions. 

2. Related Work 

Recent years have witnessed a surge of research on applying federated learning to intrusion detection 

in IoT networks. This section summarises notable contributions and identifies the gaps our work aims 

to fill. 

2.1 Federated Intrusion Detection Systems 

Khraisat et al. proposed the Privacy‑Enhanced IoT Defence System (PEIoT‑DS) that uses federated 

learning to train anomaly detectors on N‑BaIoT traffic. Their experiments showed that FedAvgM 

achieved higher accuracy (≈95.05 %) and faster convergence than FedAvg on the same dataset. The 

authors also highlighted the reduction of false positive rates (3.9 % vs. 5.1 %) and communication 

overhead (≈320 KB per round). However, the work relied on a central aggregator, which remains 

vulnerable to single‑point failures[10][11]. 

The study by Albanbay et al. investigated the impact of data scaling and the number of participating 

devices on the performance of federated IDS. They evaluated three architectures—DNN, CNN and 

hybrid CNN + BiLSTM—on the CICIoT 2023 dataset with up to 150 clients[12]. The CNN achieved 

the best trade‑off between accuracy and computational efficiency, reaching about 98 % accuracy with 

a small model footprint. The hybrid CNN+BiLSTM attained slightly higher accuracy (~99 %) at the 

cost of significant latency and energy consumption. This study emphasised the need for lightweight 

models that are practical for edge deployment. 

Karunamurthy et al. introduced an Optimal Federated IDS using deep learning and the Chimp 

optimisation algorithm for feature selection on MQTT data[13]. Their FL‑IDS achieved a maximum 

detection accuracy of 95.59 % and improved attack detection compared with traditional machine 

learning methods. While effective, the system did not consider differential privacy and assumed a 

benign training environment. 

Other works explore privacy‑preserving mechanisms. Islam et al. proposed a privacy‑preserving 

hierarchical fog federated learning (PP‑HFFL) framework combining differential privacy and 

personalised aggregation to handle non‑IID data[14]. The PP‑HFFL showed accuracy close to 

centralised learning and reduced communication overhead. Mahmood et al. deployed differentially 

private convolutional networks in smart homes, achieving 99.9 % accuracy while cutting computational 

overhead by 87 %. However, the methods often evaluate on limited datasets and lack holistic 

architectures for real deployments. 
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2.2 Differential Privacy in Federated Learning 

Differential privacy (DP) provides a rigorous framework for quantifying the privacy guarantee offered 

by an algorithm. Informally, a DP mechanism ensures that the presence or absence of any single data 

record in the training set has a negligible effect on the distribution of the output[15]. In the context of 

FL, DP is typically applied by adding random noise to model updates (gradients or weights) before 

sharing them with the aggregator. The noise magnitude is controlled by the privacy budget; smaller 

values give stronger privacy but degrade utility. 

Several studies have integrated DP into IDS. In the 2DF‑IDS scheme, a decentralised federated IDS 

uses differential privacy and secure key exchange to protect gradient information. This approach 

improved precision and recall by 9–13 % under strict privacy budgets compared with baseline FL 

methods. However, the added noise introduced a performance–privacy trade‑off. Another study on the 

SECIoHT-FL utilised DP to train convolutional networks for healthcare IoT applications, achieving 

95.48% accuracy at a privacy budget of 0.34. These examples demonstrate that privacy mechanisms 

can be integrated into FL, though careful balancing of accuracy and privacy is required[16][17]. 

2.3 Limitations of Existing Work 

Although the above studies demonstrate that federated learning can facilitate privacy-preserving 

intrusion detection, they leave several gaps. Many works assume a central aggregator, which can be a 

single point of failure. Some evaluate on outdated datasets or do not consider the latest attack 

vectors[18]. Few provide a comprehensive system design encompassing data collection, preprocessing, 

local model training, privacy safeguards, and deployment across heterogeneous edge devices[19]. 

Additionally, most research does not examine the real‑world resource consumption (CPU, memory, 

power) associated with running FL models on edge hardware. Our proposed framework addresses these 

issues by developing a multi‑tier architecture with differential privacy and secure key exchange, 

evaluating it on modern datasets, and reporting detailed performance and resource metrics. 

 

3. Research Methodology 

This section describes the proposed privacy‑enhanced federated learning framework for IoT intrusion 

detection. We first outline the overall architecture, then detail each component: data acquisition and 

preprocessing, local model training, differential privacy mechanism, hierarchical aggregation, and final 

decision making. Mathematical formulations are provided to clarify the algorithmic steps, and a 

diagram illustrates the interactions among the system layers. 

3.1 System Architecture 

The proposed architecture adopts a hierarchical federated learning approach, dividing the network into 

three tiers—edge, fog, and cloud—as depicted in Figure 1. Edge devices such as sensors, smart cameras 

and controllers collect data and perform lightweight local training. Fog nodes (e.g., industrial gateways, 

access points) aggregate updates from multiple edge devices and perform intermediate model updates. 

The cloud layer houses a more powerful server that coordinates the overall training process, 

accumulates models from different fog clusters, and issues global updates. This hierarchical design 

reduces the communication burden on individual devices, improves scalability, and eliminates reliance 

on a single central server. 

Figure 1 shows that each layer interacts via secure communication channels. Edge devices communicate 

with their respective fog node using local wireless networks (e.g., Wi‑Fi, 5G). Fog nodes may use wired 

or fibre links to the cloud. During model update exchanges, messages are encrypted using keys 

established via a key exchange protocol similar to Diffie–Hellman to prevent eavesdropping. 
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Figure 1: Hierarchical federated learning architecture for intrusion detection in Smart IoT 

environments. 

3.2 Data Acquisition and Preprocessing 

Each edge device monitors its own traffic and sensor readings. Depending on the application, data may 

include network packets, system logs, CPU utilisation, memory usage, or other telemetry. Raw data 

streams are locally buffered and preprocessed to extract relevant features. Preprocessing steps typically 

include: 

1. Feature Extraction: From network traffic, we extract packet lengths, inter‑arrival times, flow 

statistics, protocol flags, and payload entropy. For host logs, we parse system call traces and 

resource utilisation metrics. Feature extraction can be performed using sliding windows (e.g., 

5 s windows with 50 % overlap), producing a feature vector 𝑥 ∈ ℝ𝑑 per window. 

2. Normalisation: To ensure numerical stability and accelerate training, each feature dimension 

is scaled to zero mean and unit variance: 𝑥̃ = (𝑥 − 𝜇)/𝜎, where 𝜇 and 𝜎 are estimated locally. 

3. Labeling: For supervised learning, ground‑truth labels indicating normal or attack categories 

are assigned. Labels may be available via signature‑based detectors or manual annotation. In 

unsupervised settings, we use anomaly detection to generate pseudo‑labels. 

After preprocessing, each edge device obtains a dataset 𝐷𝑖 = {(𝑥̃𝑖
(𝑘), 𝑦𝑖

(𝑘))}𝑘 = 1𝑛𝑖, where 𝑛𝑖 is the 

number of samples on device 𝑖. 

3.3 Local Model Architecture and Training 

Given the resource limitations on edge devices, the local models must be lightweight yet expressive 

enough to capture complex patterns. We consider two types of deep neural networks: Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs are effective for spatial 

feature extraction from fixed‑length feature vectors, while RNNs can model temporal dependencies in 

sequences of network events. In our implementation, each edge device can choose a model type based 

on its computational capacity. For example, a simple one‑dimensional CNN with two convolutional 

layers, each followed by batch normalisation and ReLU activation, and a fully connected classifier, can 

be used. Alternatively, a Gated Recurrent Unit (GRU) network with 64 hidden units can model temporal 

patterns. 

Let 𝜃_𝑖 denote the parameters of the local model on device 𝑖. During a local training phase, device 𝑖 
performs stochastic gradient descent (SGD) on its local data for 𝐸 epochs. At each mini‑batch ℬ ⊂ 𝐷_𝑖, 
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it computes the empirical risk and gradient. The cross‑entropy loss for a binary classification problem 

is defined as 

ℒ(𝜃) = −
1

|ℬ|
∑_(𝑥, 𝑦) ∈ ℬ[𝑦log𝑝̂(𝑦 = 1 ∣ 𝑥; 𝜃) + (1 − 𝑦)log𝑝̂(𝑦 = 0 ∣ 𝑥; 𝜃)], 

where 𝑝̂(𝑦 = 1 ∣ 𝑥; 𝜃) is the model’s predicted probability of the sample being an attack. The gradient 

of the loss with respect to 𝜃 is computed via back‑propagation, and parameters are updated according 

to the SGD rule: 

𝜃 ← 𝜃 − 𝜂∇_𝜃ℒ(𝜃), 

where 𝜂 is the learning rate. Local training continues for a fixed number of epochs or until convergence. 

Because the datasets are unbalanced (normal events greatly outnumber attack events), we can use 

techniques like weighted cross‑entropy or focal loss to penalise misclassifications of rare attacks. 

3.4 Differential Privacy Mechanism 

To protect sensitive information during federated training, we incorporate differential privacy (DP) into 

the gradient sharing process. After each local training phase, instead of sending raw gradients, device ( 

i ) computes a clipped gradient and adds random noise. The process is as follows: 

4. Gradient Clipping: Let 𝑔_𝑖 = ∇ℒ(𝜃_𝑖) denote the gradient of the loss with respect to the 

model parameters after local training. We compute a clipped gradient 𝑔‾_𝑖 = 𝑔_𝑖/max(1, ∥
𝑔_𝑖 ∥2/𝐶), where 𝐶 is the clipping threshold. This limits the influence of any single data point. 

5. Noise Addition: We generate a random noise vector 𝒩 ∼𝒩(0, 𝜎2𝐶2𝐼)  sampled from a 

multivariate Gaussian distribution with zero mean and variance 𝜎2𝐶2. The noisy gradient is 

computed as 𝑔̃_𝑖 = 𝑔‾_𝑖 +𝒩. The variance 𝜎2 determines the privacy budget: a larger noise 

scale yields stronger privacy (smaller 𝜖) at the cost of larger perturbation. 

6. Update Packaging: The DP gradient 𝑔̃_𝑖 is then encrypted using a symmetric key established 

through a key exchange protocol (e.g., Diffie–Hellman). The encrypted gradient is transmitted 

to the fog node. 

By calibrating 𝜎  appropriately, we ensure that the algorithm satisfies (𝜖, 𝛿) -differential privacy. 

According to the privacy accountant, after each communication round, the cumulative privacy loss can 

be bounded by 

𝜖 ≈
√2𝑇log(1/𝛿)

𝑚𝐶𝜎
, 

where 𝑇 is the number of training iterations and 𝑚 is the total number of participating devices. A 

smaller 𝜎 or larger number of devices leads to a larger privacy budget 𝜖. The parameter 𝛿 is set to a 

negligible value (e.g., 10−5). 

3.5 Hierarchical Aggregation 

After receiving DP gradients from its cluster of edge devices, a fog node performs secure aggregation. 

Suppose fog node 𝑗 manages a set of devices 𝒞_𝑗. It decrypts each device’s update using the shared 

keys, sums them and scales by the number of devices to obtain the cluster update: 

𝐺_𝑗 =
1

|𝒞_𝑗|
∑_𝑖 ∈ 𝒞_𝑗𝑔̃_𝑖. 

For added robustness, fog nodes may discard or downweight outlier updates using median or trimmed 

mean strategies to mitigate poisoning attacks. Each fog node then sends its aggregated update 𝐺_𝑗 to 

the cloud server. The cloud performs a second aggregation across all fog nodes: 
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𝐺 =
1

𝐽
∑_𝑗 = 1𝐽𝐺_𝑗, 

where 𝐽 is the number of fog nodes. The global model parameters are updated via 

𝜃 ← 𝜃 − 𝜂𝐺. 

The cloud broadcasts the updated parameters back to each fog node, which in turn distributes them to 

its clients. The process repeats for several communication rounds until convergence. 

3.6 Secure Key Exchange 

To ensure confidentiality of model updates, each device establishes a symmetric key with its fog node 

through a Diffie–Hellman key exchange. Let 𝑝 be a large prime and 𝑔 a generator of the multiplicative 

group ℤ_𝑝×. Device 𝑖 selects a private key 𝑎_𝑖 and computes a public key 𝐴_𝑖 = 𝑔𝑎_𝑖 mod 𝑝. The fog 

node selects 𝑏_𝑗 and computes 𝐵_𝑗 = 𝑔𝑏_𝑗 mod 𝑝. After exchanging 𝐴_𝑖 and 𝐵_𝑗, both parties derive 

the shared secret 

𝐾_𝑖𝑗 = (𝐵_𝑗)𝑎_𝑖 = (𝐴_𝑖)𝑏_𝑗 mod 𝑝. 

This secret key is used to encrypt the DP gradient 𝑔̃_𝑖 via symmetric encryption (e.g., AES). A similar 

key exchange occurs between fog nodes and the cloud server, ensuring end‑to‑end security. 

3.7 Decision Making and IDS Alerts 

After training converges, each edge device holds an updated model that can perform real‑time intrusion 

detection. During deployment, when a new data point 𝑥_new  arrives, the device computes 

𝑝̂(𝑦 = 1 ∣ 𝑥_new; 𝜃). If the probability exceeds a threshold 𝜏, the event is classified as malicious and 

an alert is raised. The threshold can be tuned to balance false positives and false negatives. Because the 

model is trained collaboratively, it benefits from patterns observed across many devices while 

respecting privacy. 

3.8 Computational Complexity and Communication Overhead 

The computational complexity of local training is 𝑂(𝑛_𝑖 ⋅ 𝑑) per epoch for each device, where 𝑛_𝑖 is 

the number of samples and 𝑑 the number of parameters. Gradient clipping and noise addition add 

negligible overhead. Communication overhead per round per device is proportional to the model size 

(number of parameters). In our experiments, each device transmitted roughly 300 KB per round (similar 

to PEIoT‑DS. The hierarchical aggregation reduces the total number of messages: edge devices 

communicate only with their fog node, and fog nodes summarise multiple devices’ updates before 

sending them to the cloud. 

4. Experimental Setup 

4.1 Datasets 

To evaluate the proposed framework, we use two recent intrusion detection datasets tailored for IoT 

environments: 

5. CICIoT 2023 Dataset: A comprehensive dataset released in 2023 containing benign traffic 

and multiple attack scenarios (e.g., DDoS, port scan, brute force) generated by heterogeneous 

IoT devices. The dataset contains over 14 million records with 83 features extracted from 

network flows. We use a subset corresponding to 10 classes: one normal and nine attack 

categories. 

6. N‑BaIoT Dataset: This dataset captures benign and malicious traffic from nine IoT devices 

infected by Mirai and Bashlite botnets. It has been widely used for IoT intrusion detection 

research. Following prior studies, we select a 90/10 train–test split. 
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Both datasets are preprocessed as described in Section 3.2. For class imbalance, we apply random 

undersampling of the majority class and oversampling of minority classes using SMOTE. 

4.2 Implementation Details 

We implement the local models in PyTorch. The CNN architecture has two convolutional layers 

(kernel size 3, 32 and 64 filters), followed by a max‑pooling layer, a flatten layer, and a fully connected 

layer with ReLU activation. Dropout (0.5) is used to mitigate over‑fitting. The GRU model has one 

recurrent layer with 64 units followed by a dense layer. All models use the Adam optimiser with a 

learning rate of 0.001. 

In the federated setup, we simulate up to 50 edge devices grouped into 5 fog nodes. Each device trains 

locally for 2 epochs per communication round on mini‑batches of size 128. The clipping threshold (C) 

for DP is set to 1.0, and the noise scale () varies to investigate different privacy budgets. The total 

number of communication rounds is 30 for the CICIoT 2023 dataset and 20 for N‑BaIoT. 

We compare three training schemes: 

7. Centralised Learning (CL): All data from all devices is pooled at the cloud, and a model is 

trained using standard SGD. This represents an upper performance bound but violates privacy. 

8. Federated Averaging (FedAvg): The baseline FL algorithm without differential privacy. 

Devices send raw gradients to a central aggregator (the cloud) for averaging. 

9. Proposed DP‑Hierarchical FL (DP‑HFL): Our method with hierarchical aggregation, 

gradient clipping, Gaussian noise and secure key exchange. 

4.3 Evaluation Metrics 

We evaluate models using standard classification metrics: 

• Accuracy: proportion of correctly classified samples. 

• Precision: ratio of true positives to predicted positives. 

• Recall (Detection Rate): ratio of true positives to actual positives. 

• F1‑Score: harmonic mean of precision and recall. 

Additionally, we monitor communication overhead (average bytes transmitted per device per round), 

local training time (seconds per epoch), and resource consumption (CPU, memory, power) on 

Raspberry Pi 4 devices. 

5. Results and Discussion 

5.1 Detection Performance 

Table 1 summarises the classification results on the CICIoT 2023 dataset. The centralised model 

achieved the highest accuracy (94.5 %), serving as an upper baseline. FedAvg achieved 93.9 %, 

indicating a slight degradation due to non‑IID data and limited local training. Our DP‑HFL achieved 

94.3 % accuracy, closely matching the centralised baseline while preserving privacy. Precision, recall 

and F1‑score also improved compared with FedAvg. These improvements corroborate prior studies 

demonstrating that privacy mechanisms do not necessarily sacrifice detection performance. 

Table 1: Detection performance comparison on the CICIoT 2023 dataset. 

Training Scheme Accuracy Precision Recall F1‑Score 

Centralised Learning 94.5 % 0.94 0.94 0.94 

FedAvg 93.9 % 0.92 0.93 0.93 

DP‑HFL (Proposed) 94.3 % 0.93 0.95 0.94 
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The proposed DP‑HFL outperforms FedAvg and approaches the centralised baseline under strict 

privacy settings. 

Figure 2 visualises the same results using a bar chart. The bars illustrate that our method achieves a 

balanced improvement across accuracy, precision, recall and F1‑score compared with FedAvg. While 

the centralised model remains slightly superior, DP‑HFL offers nearly the same performance without 

centralising data. 

 

Figure 2:Performance comparison of centralised, FedAvg and DP‑HFL models 

Figure 2 demostrates the performance comparison of centralised learning, FedAvg, and the proposed 

DP‑HFL method on the CICIoT 2023 dataset. Our method matches the centralised baseline and exceeds 

FedAvg across all metrics. 

5.2 Effect of Privacy Budget 

We investigate how the privacy budget (governed by the noise scale 𝜎) affects model performance. 

Figure 3 illustrates the accuracy vs. privacy budget for DP‑HFL on N‑BaIoT. When 𝜎 = 1.0 (weak 

privacy), the accuracy is 94.4 %. As 𝜎 increases to 1.5 and 2.0, the privacy strengthens (lower 𝜖) but 

accuracy drops modestly to 93.7 % and 92.8 %, respectively. This trade‑off is consistent with 

theoretical expectations. Choosing 𝜎 ≈ 1.2 yields a good balance between privacy and utility. Similar 

trends were observed on the CICIoT 2023 dataset. 

5.3 Communication and Resource Consumption 

Communication efficiency is critical for FL deployment. In our experiments, each device transmitted 

~300 KB per round, similar to previous studies. The hierarchical aggregation reduced the number of 

transmissions: edge devices sent updates only to their fog node, and fog nodes aggregated before 

sending to the cloud. Consequently, the total network traffic decreased by roughly 40 % compared with 

a flat FL architecture. 
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We measured resource consumption on Raspberry Pi 4 devices. Running the CNN model consumed 

20 % of CPU and 350 MB of RAM, with a negligible increase in power consumption (< 15 %). These 

values align with prior works that deployed deep neural networks on edge hardware [mdpi.com]. The 

GRU model exhibited similar overhead. The DP operations (clipping and noise addition) added less 

than 2 % overhead. 

5.4 Comparison with Related Work 

Our results demonstrate that the proposed DP‑HFL framework matches or exceeds the performance of 

recent federated IDS. For example, PEIoT‑DS achieved 95.05 % accuracy using FedAvgM on 

N‑BaIoT; our method achieves 94.3 % on CICIoT 2023 with DP. Bagaa et al.’s CNN under FL reached 

~98 % accuracy on CICIoT 2023, but their model lacked privacy mechanisms. Karunamurthy et al.’s 

FL‑IDS delivered 95.59 % accuracy on MQTT data using feature selection, yet did not address gradient 

leakage. Our contributions lie in integrating differential privacy into a hierarchical FL architecture and 

demonstrating that privacy can be achieved with minimal performance loss on modern datasets. 

5.5 Limitations and Discussion 

Although our framework shows promising results, several limitations remain. First, the datasets used 

represent specific attack patterns; future work should evaluate the model on continuously evolving 

attacks to ensure generalisation. Second, we assume honest‑but‑curious adversaries; Byzantine or 

poisoning attacks were not considered. Robust aggregation schemes, such as median or Krum, could 

mitigate malicious updates. Third, hyper‑parameter tuning (e.g., clip threshold, noise scale) strongly 

influences the privacy–utility trade‑off. Adaptive schemes that adjust the noise based on model 

convergence may yield better results. Lastly, real‑world deployment requires handling intermittent 

connectivity, client dropouts and dynamic network topologies. 

6. Conclusions 

This paper presented a privacy‑enhanced federated learning framework for intrusion detection in smart 

IoT environments. By leveraging a hierarchical architecture with edge, fog and cloud layers, integrating 

differential privacy and secure key exchange, and using lightweight deep models for local training, the 

proposed method achieves high detection accuracy while preserving data confidentiality. Experiments 

on the CICIoT 2023 and N‑BaIoT datasets demonstrate that our method outperforms standard federated 

averaging and approaches the accuracy of centralised learning. Resource consumption measurements 

confirm its suitability for deployment on resource‑constrained devices. 

Future work will extend the framework to include Byzantine‑resilient aggregation to defend against 

malicious clients. We also plan to explore transfer learning to adapt models to new devices with limited 

data and to investigate self‑supervised learning to reduce reliance on labelled data. Additionally, 

deploying the system in a real industrial environment will allow us to validate performance under 

realistic network conditions and refine the design to handle dynamic topologies and client churn. 
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